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Abstract

We present an empirical framework to study segregation that bridges the
empirical literature on residential choice and the theoretical literature on
neighborhood segregation. The former literature features equilibrium em-
pirical models of disaggregated choices, whereas the latter literature is con-
cerned with the aggregate phenomenon of segregation, which is often studied
in disequilibrium. With this in mind, our framework explicitly allows for
the disaggregated households’ choices to be observed out of equilibrium.
We estimate the endogenous determinants of households’ choices with novel
instrumental variables that can be constructed with no additional data re-
quirements. We then present a simulation procedure that aggregates these
choices for a full characterization of the process of segregation. We im-
plement our approach to analyze the racial segregation of White, Black,
Hispanic and Asian households in the San Francisco Bay Area from 1990-
2004. We find that households of all races react in very different ways to
neighborhoods of different racial compositions. As a result of this hetero-
geneity, we find that neighborhoods at the end of our sample period are out
of equilibrium, as segregation would increase by over 20% in the absence of
any external shocks to the housing market.

⇤University of Rochester and University of Houston. We thank Patrick Bayer and Alvin
Murphy for valuable conversations. All errors are our own. We also gratefully acknowledge
Patrick Bayer and Alvin Murphy for sharing their data.
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1 Introduction

Residential neighborhoods have been linked to a broad set of outcomes including
educational attainment (Case and Katz (1991)), employment and wages (O’Regan
and Quigley (1996)), access to food (Morland et al. (2002)), general health (Diez Roux
(2001)) and social cohesion (Sampson, Raudenbush and Earls (1997)). Most
of this literature has examined the effects of segregation in neighborhoods and
schools along race and other socio-economic factors. For instance, residential seg-
regation in neighborhoods have been linked to a broad set of outcomes including
educational attainment and labor market outcomes (Cutler, Glaeser and Vigdor
(2008)), infant health (Mason et al. (2009)), friendship formation (Mouw and
Entwisle (2006)), crime (Kling, Ludwig and Katz (2005)), intergenerational mo-
bility and economic opportunity (Chetty et al. (2014)) and various measures of
subjective well being (Ludwig et al. (2012)). Similarly, school segregation has
been linked to lower educational attainment (Rivkin, Hanushek and Kain (2005))
and wider black-white achievement gaps (Card and Rothstein (2007)) but has
not been found to generate long lasting classroom peer effects (Angrist and Lang
(2004)). In addition, school desegregation programs have been found to have in-
creased black graduation rates (Guryan (2004)), college attendance and likelihood
of arrest (Bergman (2016)).

Neighborhood and school segregation are aggregate outcomes that are deter-
mined by residential choices. Households with different preferences and expecta-
tions tend to choose to reside in different locations. If similar households are likely
to have more similar preferences and expectations, we should observe an agglom-
eration of similar households in the same location, an outcome commonly known
as segregation. Ever since Tiebout (1956), a rich theoretical and empirical litera-
ture has been developed to study residential choices. Specifically with respect to
segregation, there has been two strands of the literature. First, empirical models
of residential choice have focused on studying the determinants of segregation in
equilibrium (e.g., Bayer, McMillan and Rueben (2004); Bayer and Timmins (2005,
2007); Ringo (2013)). Second, there have been advances in the understanding of
segregation as an aggregate phenomenon in disequilibrium models of segregation
based on the seminal work of Schelling (1969, 1971). In this paper, we present a
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unified framework that attempts to build a bridge between these two strands of
the literature. We then apply our approach to analyze racial segregation in the
San Francisco Bay Area from 1990 to 2004.

A key assumption in models of residential choice is that households are ob-
served in sorting equilibrium (Bayer and Timmins (2005)), i.e., in the absence
of future shocks, the demographic compositions of the neighborhoods will not
change. This assumption is somewhat incongruous with the data. In Figure 2,
we present the racial compositions of several neighborhoods in the San Francisco
Bay Area over a fifteen year period. These neighborhoods exhibit substantial de-
mographic changes, and these changes often appear to be serially correlated. To
fit this prediction, standard empirical models of residential choice attribute these
changes to (serially correlated) exogenous shocks to these neighborhoods.

However, as Schelling (1969) first argued, the composition of neighbors may
also change endogenously due to the presence of neighborhood amenities that not
only affect but are also affected by residential decisions. If, for instance, White
households prefer White neighbors relative to non-White households, then an
increase in the non-White share of a neighborhood could induce additional relative
outflows of White households, which will endogenously contribute to further White
flight even in the absence of exogenous shocks. The dynamics induced by such
social interactions has led Schelling (1971) to suggest that neighborhoods are more
likely to be observed adjusting along some trajectory to a long-run equilibrium
rather than having achieved that equilibrium already.

Specifically, our paper has four main methodological innovations. (1) We
develop a two-step approach to study neighborhood segregation along a social,
endogenous amenity, such as the racial composition of neighbors. It allows for
households to make residential decisions with incomplete information, thus allow-
ing for neighborhoods to not converge to an equilibrium instantaneously. Thus,
at any point in time neighborhoods may be observed out of equilibrium, i.e., in
a trajectory towards convergence to an equilibrium. (2) This approach identifies
the location and other features (e.g., stability) of any equilibrium, including in
the presence of multiple equilibria. (3) We implement this approach in a dynamic
model of residential choice with moving costs. Importantly, we show that for our
purposes we can avoid making many of the assumptions made in the standard
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literature regarding the structure of state variables and their expected transi-
tions, which allows us to circumvent the inherent issues involved with separately
identifying preferences and expectations raised in Manski (2004).1 This happens
because our approach does not require isolating the flow utility component of a
cumulative utility. (4) We introduce novel instrumental variables (IV) to identify
the causal effects of endogenous, social amenities on demand. These IVs have
no additional data requirements and follow directly from the internal logic of a
dynamic model of residential choice with moving costs, even though they can be
also used without imposing such assumptions, e.g., in a reduced-form context.

We implement our approach to analyze racial segregation between White,
Black, Hispanic and Asian households in the San Francisco Bay Area from 1990-
2004 using a recently constructed, high frequency data set on households’ resi-
dential moves in the Bay Area (Bayer et al. (2016)). We find that households
of different races react quite differently to neighborhoods of different racial com-
positions. Households of all races react positively to neighbors of the same race,
though to differing degrees (e.g., Hispanic households react much more positively
to Hispanic neighbors than households of other races do). However, White and
Asian households react negatively to Black and Hispanic neighbors, and White,
Black and Hispanic households all react modestly negatively to Asian neighbors.

These heterogeneous responses underly how households sort across neighbor-
hoods, which, in the aggregate, leads to a distinct pattern of increasing segre-
gation. We find that in the absence of external shocks, segregation in the Bay
Area in 2004 would increase by over 20% relative to the current year. Households
initially sort slowly, as the implied changes in the expected racial composition of
neighborhoods are not sufficiently large to offset most households’ moving costs.
However, as these small changes accumulate, after two to four years over two
thirds of Bay Area neighborhoods experience a substantial amount of monthly

1As Manski (2004) has pointed out, expectations and preferences may be undistinguishable
using choice data alone. This may, for example, lead to misidentification of households’ prefer-
ences for neighbors of the same race. For example, a world in which people care strongly for
neighbors of the same race generates observationally equivalent choice data to a world in which
people care weakly for neighborhoods of the same race, but tend to overestimate the propor-
tion of neighbors of the same race. In our model, we can circumvent this issue by focusing on
households’ choices instead of their preferences since in both worlds, the racial compositions of
neighborhoods would evolve identically.
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turnover. The effects of this aggregate increase in segregation are not felt equally,
as Hispanic households concentrate to the greatest extent, while White house-
holds actually spread themselves more diffusely throughout the neighborhoods of
the Bay Area.

Relevant Literature

Our paper lies at the nexus of two distinct but related literatures related to neigh-
borhood choice and segregation. We briefly review some of the most relevant
studies.

Empirical Models of Residential Choice and Neighborhood Sorting

Because segregation is an outcome brought up by neighborhood sorting, a key
related literature involves studying the residential choice of households. Ever since
Tiebout (1956), these has been a prolific literature studying the determinants of
residential choice, and thus segregation.2 Three papers are particularly related to
our study. Bayer, McMillan and Rueben (2004) develop a framework to estimate
horizontal models of neighborhood choice, building on insights from the empirical
Industrial Organization literature (Berry (1994) and Berry, Levinsohn and Pakes
(1995)). This framework has been widely applied and extended in this literature
(e.g., Bayer, Ferreira and McMillan (2007); Bayer, Keohane and Timmins (2009);
Ringo (2013); Bayer et al. (2016); Caetano (2016)). They also discuss endogeneity
concerns when a social, endogenous amenity is present, such as the composition
of neighbors. Bayer and Timmins (2005) study the existence and uniqueness of
equilibrium in such sorting models with social, endogenous amenities, and Bayer
and Timmins (2007) discuss estimation in empirical models like these, suggesting
an Instrumental Variables (IV) approach following the logic of a static model of
neighborhood choice.

We build a new framework borrowing many insights from these papers. The
2See, for example, Epple, Filimon and Romer (1984); Kiel and Zabel (1996); Epple and

Sieg (1999); Epple, Romer and Sieg (2001, 2003); Bayer, McMillan and Rueben (2004); Bayer
and Timmins (2005, 2007); Bayer, Ferreira and McMillan (2007); Bayer et al. (2016); Caetano
(2016). Kuminoff, Smith and Timmins (2013) provide a comprehensive review of the growing
literature on neighborhood sorting.
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key difference lies in our assumption regarding households’ expectations at the
time of their residential decision. While these models make assumptions of com-
plete or nearly complete information, we build a framework that is agnostic about
how expectations are formed. We discuss below that this departure is crucial
to allow for the data to be observed out of the equilibrium. Another important
difference is that our framework builds on a dynamic model of residential choice
with moving cost. This is not new in the literature (see, for example, Bayer et al.
(2016) and Caetano (2016)), but we show that, when the goal of the framework
is to study segregation rather than to estimate preferences for amenities (which is
the typical objective in these studies), then many assumptions made in standard
approaches of dynamic demand estimation are not needed. Finally, we develop
a novel IV approach that follows the logic of a dynamic model of neighborhood
choice.

Models of Segregation based on Schelling (1969, 1971)

A largely theoretical literature based on the seminal Schelling model (Schelling
(1969, 1971)), has sought to explain the mechanism behind segregation. In the
Schelling model, heterogeneous agents select where to live by simple rules of
thumb. Although this is a purely heuristic model that is not based on the explicit
optimization of any objective, it has generated valuable insight into the fundamen-
tal social feature that generates segregation: agents of different races must react
systematically differently to the racial composition of their neighbors. Schelling
also made explicit the role of some social friction to ensure that neighborhoods
gradually evolve toward an equilibrium state (e.g., myopia as in the Schelling
model). A number of later theoretical papers have embedded this intuition into
a more standard economic framework (e.g., Becker and Murphy (2000)), yield-
ing important results. For instance, in a simple utility maximization framework,
Pancs and Vriend (2007) show that segregation may arise even when agents do not
possess discriminatory preferences in the aggregate, and Zhang (2009) has shown
that the stable equilibria of the Schelling model are also stable when considered
in the context of an evolutionary game. Recently, there has been many attempts
to estimate these models of segregation both in a reduced-form and a structural
context (e.g., Card, Mas and Rothstein (2008a); Banzhaf and Walsh (2013); Ringo
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(2013); Caetano and Maheshri (2015)).
Like Caetano and Maheshri (2015), our paper provides an empirical framework

that is both consistent with heuristic Schelling-style models and has an equivalent
interpretation based on the optimization of a well defined objective function. We
extend the ideas in Caetano and Maheshri (2015) in many directions. One key
difference lies in the assumptions of expectations, which encompass not only the
assumption made in models based on Schelling (1969, 1971), but also the assump-
tions made in standard models of neighborhood choice, as discussed above. Also,
we focus in this paper on general equilibria, rather than on partial equilibria. Fi-
nally, we build our framework allowing for additional frictions in the choice model,
such as moving costs, yielding novel IVs.

The rest of the paper proceeds as follows. In Section 2, we present an infor-
mal overview and a formal, if overly general, conceptualization of our empirical
framework. In Section 3, we describe our data set, with the understanding that
limitations in what we are able to observe as researchers must be acknowledged
when implementing our approach. Accordingly, in Section 4, we present a de-
tailed, structural implementation of our approach in the context of an estimable
dynamic discrete choice model of residential choice and a companion simulation
procedure. In Section 5, we present our empirical results before concluding in
Section 6.

2 Empirical Approach

Before describing our empirical approach formally, we provide a big picture
view of our objective in Figure 1. Fundamentally, studying segregation boils down
to understanding how the racial compositions of neighborhoods will evolve over
time. That is, characterizing segregation is equivalent to identifying the aggre-
gate, neighborhood-level causal relationship depicted in panel 1a. Our approach,
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Figure 1: Overview

(a) Characterizing Segregation
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which we depict in panel 1b, is to unpack that aggregate causal relationship into
disaggregate, household-level causal responses to the racial compositions of neigh-
borhoods. These responses may be mediated through preferences for neighbors
of a given race, how households expectations are formed, or through preferences
for other amenities that may vary with the racial compositions of neighborhoods.
As such, they should be understood simply as demand responses per se, not dis-
criminatory preferences. We identify these responses by estimating households’
demand responses to neighbors, which can be conceptualized in a reduced-form
demand framework or in a structural model of residential choice. We then aggre-
gate these responses through a simple simulation procedure to obtain the future
racial compositions of neighborhoods.

In this section, we provide a general conceptualization of our approach with a
reduced-form specification of demand and minimal parametric restrictions. After
presenting our data, we will describe in full detail how we implement our approach
in practice with a structural, dynamic discrete choice model of neighborhood
demand.

Formally, a city is divided into J neighborhoods, each of which are populated
by households of four races: White, Black, Hispanic and Asian.3 Let N r

jt represent
the number of households of race r 2 {W,B,H,A} who reside in neighborhood j in

3In our empirical application, we restrict our analysis to these four races for simplicity, as
they constitute well over 95% of the households in our sample. In principle, groups could be
defined at more or less aggregate levels and along alternative dimensions per the application.
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period t. In each period, each neighborhood possesses a single, multidimensional
endogenous amenity: the racial composition of their residents4, which we denote
with a vector of racial shares sjt =

�
sBjt, s

H
jt , s

A
jt

�0 (srjt =

Nr
jtP

r0 N
r0
jt

). The racial
compositions of all neighborhoods in the city can be represented by the state
matrix st whose jth column is sjt. (Hereafter, we refer to all vectors and matrices
in bold type.) At the beginning of each period t, households form expectations of
their value of residing in each neighborhood and then choose where to reside.

Following Figure 1, our approach consists of two steps: first, we estimate
how households of each race will react to changes in their expectations of the
racial compositions of neighborhoods. With these estimates, we can simulate the
neighborhood-level demands for each race under counterfactual expected racial
compositions of neighborhoods. This yields a full characterization of segregation
dynamics for the city, as we can determine the convergent trajectory from any
initial state to the relevant equilibrium. For instance, this allows us to identify
how the racial compositions of all neighborhoods in the city, as observed, would
evolve in the absence of external shocks. This also allows us to characterize any
equilibria, including tipping points, bifurcations and stable equilibria.

2.1 Step 1: Estimation

We start with the log-demand function:

logN r
jt = f r

j (s
r,e
t ;↵r

) + ✏rjt (1)

where f r
j (·;↵r

) is a function unique to each neighborhood-race combination, and

sr,ejt =

⇣
sr,e,Bjt , sr,e,Hjt , sr,e,Ajt

⌘0
represents expectations of st from the perspective of

households of race r. The parameter vector ↵r represents the marginal effects of
sr,et on demand (i.e., ~rf r).

This specification of demand is quite general. For example, it allows for the
expected endogenous amenities of neighborhood k 6= j to affect demand for neigh-
borhood j in a flexible way.

Our goal in the first stage is to consistently estimate ↵r for all r = {W,B,H,A}.
Because we observe N r

jt and st, but we do not observe sr,et , it is infeasible to es-
timate equation (1). To circumvent this issue, we attempt to use the actual,

4In Remark 2, we discuss our approach in the presence of multiple endogenous amenities.

9



observed vector st as proxy for sr,et , which yields

logN r
jt = f r

j (st;↵
r
) + ✏rjt + f r

j (s
r,e
t ;↵r

)� f r
j (st;↵

r
)

| {z }
⌘rjt

(2)

Note that we have not yet made any assumptions on (a) how expectations are
formed, (b) the function f r

j (·;↵r
), or (c) the error term ✏rjt. In particular, the

composite error term in equation (2), ⌘rjt, may be correlated to st, which would
lead to endogeneity. In Section 2, we impose restrictions on the function f r

j (·;↵r
)

that are in line with the literature on neighborhood choice, and we introduce a
novel instrumental variables approach to identify ↵r.

2.2 Step 2: Simulation

Next, we consider how the racial compositions of neighborhoods might evolve
under different counterfactual values of sr,et , which we denote generically as s̃. To
do so, we must first calculate the counterfactual demand of households of race r

for neighborhood j when sr,et = ˜s. Given estimates of ↵̂r from the first stage,
this is equal to

logN r
jt(s̃) = f r

j (s̃; ↵̂
r). (3)

Given logN r
jt(s̃), we can calculate

srjt(s̃) =
N r

jt(s̃)P
r0 N

r0
jt (s̃)

(4)

and obtain the matrix st(s̃), whose jth element is
�
sBjt(s̃), s

H
jt(s̃), s

A
jt(s̃)

�
. Of

course, this approach can be repeated for any counterfactual value of s̃, which
offers a way to identify the function st(·) by simulation. An equilibrium in this
context will correspond to values of s̃ such that st(s̃) = s̃.

Remark 1. Households can be thought of as players in a game of imperfect infor-
mation where the action space is the set of possible neighborhoods from which they
can choose to reside. In this vein, we estimate best response functions in the first
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stage, and we identify subgame perfect Bayesian Nash equilibria by simulation in
the second stage.

Remark 2. Additional Endogenous Amenities. In this paper, we assume that the
racial composition of neighborhoods is the only endogenous amenity of interest.
We could in principle allow for households to consider other endogenous ameni-
ties (e.g., home prices, the incomes of neighbors, etc.) with the appropriate data.
However, even if we were able to identify the causal demand responses of house-
holds to (their expectations of) these additional endogenous amenities, we would
be unable to simulate the evolution of neighborhoods in a logically consistent
manner without making additional assumptions on how households’ expectations
of these additional endogenous amenities would be affected by s̃ (and in turn
how they might later affect s̃). Without explicit data on how expectations of all
endogenous amenities are (jointly) formed, these assumptions are unwarranted
(Manski (2004)). Thus, it is advisable to choose the set of endogenous amenities
parsimoniously, with the understanding that one must focus only on the single
primitive dimension along which households sort. For a study of racial segrega-
tion, this dimension is naturally the racial composition of neighborhoods. For a
study of, say, gentrification, this dimension might instead be the average incomes
of neighborhood residents.

Remark 3. Expectations and Equilibrium. A key difference between our approach
and previous approaches to study segregation (e.g., Bayer, McMillan and Rueben
(2004), Bayer and Timmins (2005), Bayer and Timmins (2007)) is that ours does
not assume that data are observed in equilibrium. Here, we show that this has
a close connection with an assumption on expectations. First, note that st(s̃ =

set ) = st, since by definition actual, observed choices in the data are made when
s̃ = sr,et . Thus, assuming sr,et = st (full information), as assumed in these
papers, implies assuming data are observed in equilibrium, since st(set ) = st = set .
Similarly, assuming small deviations of full information (e.g., information set is
the same across households i apart from some zero mean private information) will
imply data to be observed in equilibrium as well. Therefore, it is crucial that we
do not impose many restrictions on the expectations of households at the time
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they make their choices, otherwise we would not be able to test whether the data
are observed in equilibrium. Our approach allows us to be agnostic as to the exact
way expectations are formed as well as the content of households’ information sets
at the time of their decisions, which allows us to test whether data is observed in
equilibrium. We find that households’ choices are not observed in equilibrium.

3 Data

We perform our analysis on a monthly sample of all San Francisco Bay Area neigh-
borhoods from 1990 to 2004. We define the San Francisco Bay Area as the six
core counties (Alameda, Contra Costa, Marin, Santa Clara, San Francisco and San
Mateo counties) that comprises the major cities of San Francisco, Oakland and
San Jose and their surroundings, and we divide the sample region into 225 neigh-
borhoods. Neighborhoods are defined by merging contiguous Census tracts until
each resulting neighborhood contains approximately 10,000 households. Those
neighborhoods with fewer than six annual home sales in our sample period are
dropped.

For each neighborhood in each month, we compute estimates of their racial
composition following the approach used by Bayer et al. (2016) to construct our
sample.5 Because high frequency data on the racial composition of neighborhoods
is unavailable from standard sources (e.g., the Census) we must merge information
from two main sources in order to construct these variables. The first of these
sources is Dataquick Information Services, a national real estate data service.
Dataquick provides a detailed listing of all real estate transactions in the Bay Area
including buyers’ and sellers’ names, buyer’s mortgage information, transaction
prices and property locations. The second of these sources is a a dataset on mort-
gage applications published in accordance with the Home Mortgage Disclosure
Act (HMDA) of 1975. Notably, HMDA data contains demographic information
on mortgage applicants and the locations of properties that the applicants are
buying. By linking these datasets on buyer’s mortgage information and property
locations, we can uniquely match approximately 70 of all sales. In doing so, we are

5We gratefully acknowledge Bayer et al. (2016) for sharing their raw data and programs to
convert this raw data into a usable dataset for our analysis.
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able to estimate how the demographics of neighborhoods change with each real
estate transaction. Given neighborhood level estimates of the flows of households
of different races, we are able to compute estimates of the actual demographic
composition of each neighborhood by anchoring our estimates to the actual racial
composition of each neighborhood from the 1990 US Census. 6

There are three basic results of this procedure: for each month of our sample
period in each Bay Area neighborhood and for each of four races – White, Black,
Hispanic and Asian – we observe the total number of homeowners, the total num-
bers of inflows to that neighborhood, and the total numbers of outflows from that
neighborhood. We summarize our data in Table 1. The majority of homeown-
ers in the Bay Area are White, although there are sizable Asian and Hispanic
populations as well. The high variance in the race specific populations reflects
substantial cross-sectional heterogeneity in the racial composition of neighbor-
hoods. This composition also changes over time in our sample as reflected in net
monthly inflows (inflows minus outflows) on the order of approximately 0.5%.

We preview the observed evolution of racial compositions over time for selected
neighborhoods in Figure 2. The West Richmond, West Emeryville and Lake
Merced neighborhoods all featured considerable Black pluralities in 1990. Over
our sample period, they evolved into Hispanic, White and Asian neighborhoods
respectively. This was largely driven by large relative inflows of households of
those races. Meanwhile, the Portola neighborhood transitioned from a White to
an Asian neighborhood, and the Alum Rock neighborhood transitioned from a
White to a Hispanic neighborhood. Large influxes of Hispanic households into
the North Richmond neighborhood transformed it from a mixed White and Black
neighborhood to a predominantly Hispanic neighborhood. The evolving racial
composition of these representative neighborhoods reflects (1) households that
sort systematically, (2) households that sort sometimes at a fairly brisk pace,
and (3) heterogeneity in the initial racial compositions of neighborhoods that will
undergo turnover starting in 1990, and (4) heterogeneity in the terminal racial
compositions of neighborhoods that underwent turnover as of 2004 .

To summarize, this stylized evidence casts reasonable doubt upon the standard
6Bayer et al. (2016) report the results of multiple diagnostic tests that ensure the validity of

this estimation procedure.
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Figure 2: Racial Composition of Selected Neighborhoods Over Time, 1990-2004
(1 of 2)
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Figure 2: Racial Composition of Selected Neighborhoods Over Time, 1990-2004
(2 of 2)
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Table 1: Summary Statistics

Variable White Black Hispanic Asian

Average Number of Households
per Neighborhood (Nr

jt)

4100
(3073)

283
(456)

517
(577)

839
(1066)

Average Monthly Neighborhood
Inflows (Nr, move

jt )
11.08

(12.65)
0.68

(1.37)
2.20

(3.83)
4.74

(7.93)

Average Monthly Neighborhood
Outflows

3.54
(6.05)

0.19
(0.60)

0.58
(1.56)

1.23
(3.09)

Average Home Sales Price
(Thousands of 2004 Dollars7)

390.48
(251.52)

Total Number of Observations 40320

Note: Standard deviations are presented in parentheses.

assumption that neighborhoods are observed in equilibrium.

4 Empirical Implementation

The empirical implementation of our approach must accommodate practical
restrictions to the data that we can actually observe. Although the function
f r
j (·;↵r

) in principle allows for endogenous amenities in all neighborhoods to affect
household demands in all other neighborhoods differentially, it would be infeasible
to estimate such an expansive set of parameters ↵r without data of a much higher
degree of detail than is available. Here, we impose some key restrictions that allow
for the feasible estimation of this function. These restrictions derive from a specific
dynamic discrete choice model that entails assumptions on the way in which the
amenities of a neighborhood k may impact the demand of neighborhood j. We
start by formally describing this model, and then we explain how we estimate it
in three stages.
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A Dynamic Model of Residential Choice

At the beginning of month t, households first choose whether or not to stay in the
same house in which they lived in t� 1. Conditional on deciding not to stay, they
decide between one of the options j = 1, ..., J +1. Options j = 1, ..., J correspond
to owning a house in neighborhood j. Option j = J+1 corresponds to the outside
option of either residing outside of the city or renting within the city (as in Bayer
et al. (2016) we only observe data on homeowners). Households face a race and
time varying moving cost equal to �r

t . To simplify notation, as in Bayer et al.
(2016) we index the option of staying in the same house as J + 2.

Let jrit represent the optimal choice of household i of race r in month t. For
each j, r and t, we observe nr

jt, the total number of households of race r who
choose option jrit = j. For j = 1, ..., J + 1, nr

jt represents the number of inflows
into neighborhood j from t� 1 to t, and nr

J+2t represents the number of “stayers”,
or households who decided to remain in the same house from t� 1 to t.

We define the mean cumulative utility that households of race r obtain from
owning a house in neighborhood j in month t as vrjt

�
✏rijt
�
. The ✏rijt contains

household specific determinants of utility and is unobserved to the researcher.
We can collect these choice-specific cumulative utilities into the vector vr

t (✏
r
it)

that contains vrjt
�
✏rijt
�

as its jth element.
In each month, household i of race r observes the vector (vr

t ,�
r
t , j

r
it�1, ✏

r
it) and

chooses j in order to maximize their cumulative utility given by

V r
ijt(v

r
t ,�

r
t , j

r
it�1, ✏

r
it) = I{j=J+2}·

⇣
vrjrit�1t

+ ✏riJ+2t

⌘
+I{j21,...,J+1}· max

k2{1,...,J+1}

⇣
vrkt � �r

jrit�1t
+ ✏rikt

⌘
,

(5)
where I is the indicator function. The error term ✏rjt is assumed to be i.i.d. extreme
value 1.

Our approach unfolds in three stages: we first estimate vrjt and �r
t , and then

we identify the causal effect of the expected endogenous amenity on vrjt, ↵̂r. Next,
we use to these estimates to simulate the evolution of the racial compositions of
neighborhoods from any given counterfactual value of the expected endogenous
amenity.
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Stage 1: Estimating Cumulative Household Utilities

First, we consider households that move, i.e., households for which jrit 2 {1, . . . J+
1}. The decisions of these households can be used to identify the cumulative util-
ities vrjt. Conditional on moving, they make their choice by solving the following
optimization problem:

max

k2{1,...,J+1}
vrkt � �r

jrit�1t
+ ✏rikt. (6)

Based on the familiar logit formula, we can write choice-specific probabilities
as:

P (jrit = j | j 2 {1. . . . J + 1}, jit�1) =
exp(vrjt � �r

jit�1t
)

PJ+1
k=1 exp(v

r
kt � �r

jit�1t
)

=

exp(vrjt)PJ+1
k=1 exp(v

r
kt)

. (7)

Because moving costs do not vary by option, they cancel out (conditional on
moving).8

The data analog to the choice-specific probability is simply nr
jtPJ+1

k=1 nr
kt

. Following
Bayer et al. (2016) we can estimate v̂rjt for j 2 {1, . . . J} as

v̂rjt = log

�
nr
jt

�
� log

�
nr
J+1t

�
(8)

where v̂rJ+1t is normalized to zero (see, e.g., Berry (1994) and Berry, Levinsohn
and Pakes (1995)).

Next, we consider households that stay in their house from t � 1 to t. The
decisions of these households, along with estimates of v̂rjt, can be used to identify
the moving cost parameters �r

jt. Because the probability that a household stays
in their house should vary by the neighborhood in which they resided in t� 1, we
write the choice-specific probability for this option (J + 2) as:

8This insight is due to Bayer et al. (2016).
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P (jrit = J + 2 | jit�1) = P
⇣
vrjt + ✏riJ+2t > vrkt � �r

jit�1t
+ ✏rikt 8k 2 {1, ..., J + 1} | jrit�1

⌘

=

exp(vrjt)

exp(vrjt) +
PJ+1

k=1 exp(v
r
kt � �r

jrit�1t
)

(9)

where the last line follows from the standard logit formula. The data analog to
P (jrit = J + 2 | jit�1 = j) is simply stayersrjt

Nr
jt�1

for j = 1, ..., J . Hence, equation (9)
suggests the moment restriction:

gj(�
r
t ;v

r
t ) =

stayersrjt
N r

jt�1

�
JX

j=1

exp(vrjt)

exp(vrjt) +
PJ

k=1 exp(v
r
kt � �r

jt) + exp(��r
jt)

, j = 1, ..., J

(10)

By substituting our estimates of v̂rjt from equation (8) into the moment condition
for vrjt, we can estimate moving costs, �r

jt, via GMM. Note that we do not observe
stayersrJ+1t, so we do not identify �r

J+1t. We show below that this parameter
estimate is not needed in our approach.

Stage 2: Estimating the Causal Effect of Endogenous Ameni-

ties on the Choice of Neighborhood

We can decompose the average cumulative utility that households of race r obtain
from living in neighborhood j in month t as

vrjt = ↵r 0sr,ejt + �r
t +

˜⇠rjt, j = 1, ..., J (11)

The parameters of interest, ↵r, represent the causal effects of sr,ejt on vrjt, �r
t is

a race-month fixed effect, and ˜⇠rjt is an error term that includes all remaining
unobserved determinants of vrjt.

Because we do not observe vrjt or sr,ejt , we use v̂rjt and sjt as proxies for them.
Accordingly, we rewrite equation (11) as
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v̂rjt = ↵r 0sjt + �r
t + ⇠rjt (12)

where the error term ⇠rjt can be decomposed as

⇠rjt =
˜⇠rjt +↵r0

(sr,ejt � sjt) + (v̂rjt � vrjt) (13)

The first term of equation (13) corresponds to unobserved determinants of house-
holds’ cumulative utilities. The second term corresponds to errors in households’
expectations. The third term corresponds to any bias in the estimation of house-
holds’ cumulative utilities that was brought up from the first stage. This error
term is likely correlated to sjt, leading to a biased OLS estimator of ↵r. We
address this endogeneity problem with synthetic instrumental variables that can
be constructed from the logic of the neighborhood choice model.

Instrumental Variables

To identify ↵r, we exploit the idea that v̂rjt is a flow variable, while sjt is a
stock variable. While v̂rjt reflects the value of neighborhood j as of month t, sjt
also reflects how the neighborhood was valued in prior months t � 1, t � 2, . . . .
We leverage this asymmetry to construct an IV that plausibly affects v̂rjt only
through sjt. To do so, we isolate the transitory components of past valuations
of neighborhood j. That is, we isolate the transitory shocks that affected sjt

through choices that households made in previous months, but no longer affect
choices in month t.

Specifically, we use sjt�2 as an IV for sjt in the following equation

v̂rjt = ↵r 0sjt + �r
t + hr

(vWjt�1, v
B
jt�1, v

H
jt�1, v

A
jt�1) + µr

jt (14)

where µr
jt = ⇠rjt�hr

(·), and hr
(vWjt�1, v

B
jt�1, v

H
jt�1, v

A
jt�1) is a flexible control function.

Following the dynamic model of residential choice described above, srjt and
srjt�2 will be correlated because of shocks in vr

0
kt�2, v

r0
kt�3, ... that either (a) persist

until t or (b) do not persist until t but nevertheless affected households who
moved to neighborhood j on or before t � 2 and chose to remain until t due to
moving costs. Shocks of type (a) will be problematic, as they may be correlated
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to the error term in equation (12), but shocks of type (b) will, by construction,
be uncorrelated to that error term. By holding vjt�1 constant through the use of
the control function in equation (14), we absorb the variation in our instruments
that is due to shocks of type (a), thus isolating variation from shocks of type (b)
alone. Put another way, our identifying assumption is that shocks to households’
valuations of neighborhood j are Markov(1), i.e., shocks in t � 2, t � 3,... are
uncorrelated to shocks in t conditional on shocks in t� 1.

The logic underlying our exclusion restriction coupled with our relatively long
panel of data can be leveraged to weaken the identifying assumption even fur-
ther. For any given values of T 0 > T , we can use the component of sjt�T 0 that
is orthogonal to (vjt�1, ..., vjt�T ) as an IV for sjt. The corresponding identi-
fying assumption is that shocks to households’ valuations of neighborhood j are
Markov(⌧), i.e., shocks in t� (T 0

), t� (T 0
+ 1),... are uncorrelated to shocks in t

conditional on shocks in t� 1,...,t� ⌧ , for ⌧  T .9 Thus, with larger choices of T
and T 0, our identifying assumption will be further weakened.

Appendix A provides a more formal argument of why this IV follows logically
from the dynamic choice model described above.10

Stage 3: Identifying Neighborhood Sorting Equilibria by

Simulation

In any month, we can describe the entire city with race-specific population vectors
N r

t = (N r
1t, . . . , N

r
Jt) that imply racial specific share vectors srt = (sr1t, . . . s

r
Jt) and

a racial composition matrix st =
�
sB0
t , sH0

t , sA0
t

�0.
As described in Figure (1a), the characterization of sorting and segregation is

9Because we use the cumulative utilities rather than the flow utilities as controls, our validity
assumption is actually weaker than it seems. To see this, consider the simple example when
T = 1 and T 0 = 2. The component of sjt�2 that is used as identifying variation can in principle
be uncorrelated to vjt�1 but correlated to vrjt. However, the predictable component of vrjt (as
of t � 1) is already included in vjt�1 (because households are forward looking agents). Thus,
the only instance in which our validity assumption will be violated is if a component of sjt�2

happens to show up again in vrjt as a surprise to all races (i.e., households of all races as of t�1
were not able to predict that shock in t).

10Although this identification strategy is motivated by a structural model, it can also be
applied in a reduced-form demand estimation framework. Specifically, sjt�T 0 can be used as
instruments for sjt conditional on the inflows of all races to neighborhood j between t� 1 and
t� T .
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the understanding of how st evolves from any given state. To study this process,
we choose counterfactual state vectors and simulate the co-evolution of house-
hold choices holding all other neighborhood characteristics fixed. Equation (12)
describes how the expected racial composition in each neighborhood affect v̂rjt

for each r and j. For any given counterfactual expected racial composition ma-
trix ˜s = (s̃1, ..., s̃J) in period t, we can write the implied expected valuation for
neighborhood j of race r households as

vrjt(˜s) = ˆv̂rjt + ↵̂r0
(

˜sj � sjt) (15)

where ↵̂r and ˆv̂rjt, the predicted value of regression (14), are both estimated in the
second stage. We can compute the implied race-specific demand for neighborhood
j = 1, ..., J as

N r
jt(˜s) = N r

jt�1.

0

@ exp

�
vrjt(˜s)

�

exp

�
vrjt(˜s)

�
+

PJ
k0=1 exp

⇣
vrk0t(˜s)� ˆ�r

jt

⌘
+ exp

⇣
�ˆ�r

jt

⌘

1

A
+

+

JX

k=1

N r
kt�1.

0

@
exp

⇣
vrjt(˜s)� ˆ�r

kt

⌘

exp (vrkt(˜s)) +
PJ

k0=1 exp

⇣
vrk0t(˜s)� ˆ�r

kt

⌘
+ exp

⇣
�ˆ�r

kt

⌘

1

A(16)

+inflowsrt .

 
exp

�
vrjt(˜s)

�
PJ

k0=1 exp (v
r
k0t(˜s))

!
(17)

where ˆ�r
t is estimated in the first stage, and inflowsrt represents the total inflows

of households of race r from t � 1 to t from the outside option to one of the
“inside” options j = 1, ..., J . The first term on the right-hand side of equation (16)
corresponds to the simulated number of households who resided in neighborhood
j in t � 1 and remain in their house, incurring no moving costs. The second
term represents the simulated number of households who lived in neighborhood
k in t � 1 and then moved to neighborhood j (k = j reflects those who move
within neighborhood j). Because our simulation implicitly holds fixed all factors
that affect households’ propensity to choose the outside option, we only consider
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households who chose neighborhoods j 2 1, ..., J in t� 1

11.
The implied demand in equation (16) is understood to be determined by a

counterfactual manipulation of households’ expectations (i.e., we set sr,et =

˜s)
just before households make their decisions in t.12 Together, equations (15) and
(16) form a mapping from the neighborhood state space to itself. We can specify
this with the implied racial composition function

srjt (s̃) =
N r

jt(˜s)X

r02R

N r0

jt (˜s)
(18)

which we collect into a well defined matrix valued function st(s̃) : [0, 1]3⇥J !
[0, 1]3⇥J whose (r, j) element is equal to srjt (˜s).

A sorting equilibrium (Bayer and Timmins (2005)) is defined as a state s?

where in the absence of any shock (✏ or �r
t ), there are no changes in the demo-

graphic compositions of the neighborhoods next period.

Definition 1. Sorting Equilibria. State s? is a sorting equilibrium if st(s?) = s?.

In principle, we can identify all sorting equilibria as fixed points of the function
st(·) by conducting a grid search of all possible states s̃ and computing st (s̃) for
each counterfactual. Given a sufficiently fine grid and tolerance �, those states s̃

for which kst (s̃)� ˜sk < � can be interpreted as sorting equilibria. Because the
domain of the grid search is too large ([0, 1]3⇥J), it is computationally infeasible
to identify all such equilibria. Thus, we restrict our attention to constructing the
simulated trajectory (ŝ1, ŝ2 . . . ) where ŝn = st (ŝn�1) from a given initial state

11This is crucial to our analysis, as it allows us to use fixed point techniques to find equilibria
even under a potentially non-stationary environment. For instance, since �r

t can vary over t and
across r, we allow for race-specific secular changes to the attractiveness of the home-ownership
market when estimating the parameters of the choice model. This is particularly important for
an analysis of the Bay Area housing market during a period of rapid price appreciation.

12In principle, when choosing different counterfactuals, we could allow these expectations to
vary by race: sr,et 6= sr

0,e
t . However, the dimensionality of the counterfactual – and hence the

computational complexity of the simulation procedure – would increase by a factor of 4. Thus,
in our implementation of this approach, we consider only counterfactuals where different races
share the same expectations. This follows from the fact that at any equilibrium, sr,et = sr

0,e
t for

all r, r0 must occur. Nonetheless, this restriction does constrain the deviations from equilibria
that we can analyze in our simulation. Although such analysis is outside of the scope of the
paper, it can be easily implemented with the approach developed here.
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ŝ0. For instance, an initial state we consider is ŝ0 = st, as observed in the data.
The state at which this trajectory converges corresponds to the particular sorting
equilibrium to which the observed neighborhoods are predicted to converge (in
the absence of future shocks). A comparison of this sorting equilibrium and st

provides an explicit test of the assumption that data are observed in equilibrium.
This approach of simulating the trajectory given an initial state ŝ0 is also

useful to identify whether an equilibrium is stable or unstable.

Definition 2. Stable and Unstable Equilibria. Let k·k represent the 3⇥J dimen-
sional Euclidean norm.

1. Equilibrium s? is stable if for any ⌘ > 0, there exists a � and a n� such that
kst (ŝn)� s?k < ⌘ for all ŝ0 such that kŝ0 � s?k < � and all n > n�, where
ŝn = st (ŝn�1).

2. Equilibrium s? is unstable (i.e., a tipping point) if it is not stable.

Remark 4. It is worth discussing in detail why our IV is plausibly uncorrelated
to ↵r0

(sr,ejt � sjt), the second term included in ⇠rjt in equation (13). Note that
vrjt actually represents ve,rjt , the expected value of neighborhood j as of t, from
the perspective of households of race r. Because ve,rjt and se,rjt reflect decisions
made at the exact same time, it is plausible to assume that these expectations
were formed with the same information. Thus, any component of sjt affecting
ve,rjt must also affect se,rjt , or, more precisely, sjt is excluded from equation vrjt =

↵rse,rjt + �r
t + f r

(vt�1) + µr
jt. It follows that any IV of sjt would affect ve,rjt only

through sr,ejt and not through sjt � sr,ejt

Remark 5. Bayer and Timmins (2007) suggest an alternative instrumental vari-
ables approach that also follows from the logic of a neighborhood choice model.
In our notation, they suggest the use of observed amenities from neighborhood k

as IV for sjt, for k 6= j. They exploit the idea that v̂rjt reflects the value of choice
j as of period t, while sjt reflects the relative value of choice j (relative to all
choices k 6= j) as of period t. A different implementation of their idea suggested
by our approach is to use v̂rkt, k 6= j as IV for sjt. This may be particularly useful
when amenities are rarely observed (for instance when t varies at high frequency,
as in our application.)
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Remark 6. Recently, Bayer et al. (2016) have developed a feasible procedure to
estimate a dynamic model of neighborhood choice that builds on well known meth-
ods in dynamic demand estimation (e.g., Hotz and Miller (1993) and Rust (1987)).
We follow their estimation approach with two main departures. First, we are in-
terested in identifying only the causal effects of expected endogenous amenities on
households’ cumulative utilities. In contrast, Bayer et al. (2016) are interested in
identifying household preferences, which are typically understood as parameters
of households’ flow utilities. Hence, they need to make some assumptions in order
to isolate the flow utility from the cumulative utility that are not necessary in
our approach. In practice, this means that we can estimate the dynamic choice
model imposing less structure on the state variables and on their expected tran-
sition over time. The second departure from Bayer et al. (2016) is that we do
not explicitly allow for heterogeneity in terms of wealth. Despite its undeniable
importance, particularly when studying the behavior of homeowners, allowing for
such heterogeneity in our context would not only substantially increase the num-
ber of types of households, making the estimation infeasible (particularly for races
other than Whites, as discussed in Bayer et al. (2016)), but would require addi-
tional unwarranted assumptions on expectations (see Remark 2). We do allow for
different races to have on average different wealth, which is key to accommodate
the relevant heterogeneity in wealth for a study of racial segregation.

5 Empirical Results

We present the results of our estimation and simulation procedures. In Table 2, we
present estimates of the ↵r parameter vectors from Equation (14) that represent
the causal responses to endogenous amenities for each race. Each of the endoge-
nous amenities is instrumented by the racial compositions of each neighborhood
from periods t � 6 to t � 12, and the control variables vrjt�1, r 2 W,B,H,A are
specified linearly.

Households of all races respond positively to neighborhoods with a greater
share of residents of their own race, i.e., they are more likely to move into such
neighborhoods. Such homophilic forces contribute to sorting patterns that in-
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Table 2: Estimation Results - Responses to Endogenous Amenities

White Black Hispanic Asian

Responses to: sBjt -8.20***
(0.34)

14.08***
(0.38)

1.35***
(0.27)

-5.45***
(0.34)

sHjt -9.96***
(0.43)

4.46***
(0.52)

28.38***
(0.51)

-2.87***
(0.42)

sAjt -4.34***
(0.24)

-1.73***
(0.37)

-3.18***
(0.32)

17.18***
(0.41)

R2 0.49

Num. Obs. 150,528

Notes: All specifications include race-month fixed effects. Instrumental variables
(sjt�L, . . . ) are specified from periods t� 6 to t� 12, and control variables (vrjt�k)
are specified linearly from period t � 1. All standard errors clustered by race-
month. *** - 99% significance.

crease racial segregation. White and Asian households react negatively to greater
shares of Black and Hispanic residents, whereas Black and Hispanic households
react slightly positively to greater shares of Hispanic and Black residents respec-
tively. Whites, Black and Hispanics all react slightly negatively to greater shares
of Asian residents. These repelling forces can also contribute to sorting patterns
that increase residential segregation.

In Figure 3, we present estimates of moving costs over time that vary by
race and year.13 White, Black and Asian households’ moving costs are of similar
magnitude, and they decrease moderately by about 10% over the period from
1991-2004 Hispanic households’ have systematically lower moving costs that in-
crease slightly over the first half of the sample period before following the same
patterns as households of other races.

Incorporating these results into our simulation procedure paints a clear and
interesting picture. For narrative purposes, we focus on the results of our simula-

13Note that the estimates of moving costs are denominated in utils, not dollars. Hence, they
should only be interpreted in relation to each other. Confidence intervals for moving costs have
been omitted for clarity, but each estimate of �r

t is statistically significantly different from zero
at the 99% level.
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Figure 3: Estimated Moving Costs Over Time
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Notes: Race- and year- specific moving costs are estimated by GMM with moment
conditions given in Equation (10). Moving costs denominated in units of utils.
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tion from the final month of our sample, December 2004. In Figure 4, we present
a graph of the number of neighborhoods that experience at 5 or more simulated
net inflow of households of all races in a given month. We describe such neigh-
borhoods as “in flux.” Initially, very few neighborhoods are in flux, as relatively
high moving costs generate substantial inertia in households’ residential choices.
Nevertheless, a small but increasing number of neighborhoods are in flux even
early on. Over time, changes in these neighborhoods spill over to other neighbor-
hoods, as their relative attractiveness changes as well. After approximately two
years, the racial composition of enough neighborhoods have changed so that the
relative attractiveness of neighborhoods in the Bay Area as a whole has changed
enough in relation to moving costs. As a result, over two thirds of neighborhoods
are found to be in flux at the peak of the simulation. After approximately four
years, fewer than ten percent of neighborhoods remain in flux, as the majority of
the Bay area has converged to a long run equilibrium state.

The outcome of this pattern of sorting is a change in the levels of segregation
in the Bay Area, which we depict in Figure 5. In this figure, we present the
average of the four-race Herfindahl index across all neighborhoods in the sample.
A higher value means that the neighborhood is more dominated by household’s of
a single race, i.e., more segregated. Following the sorting pattern described above,
aggregate segregation remains relatively unchanged until sorting accelerates after
two years. After four years, aggregate segregation increases at a much lower rate.
By the end of ten years, aggregate segregation in the Bay Area is simulated to be
roughly 18% higher than what is observed initially.

The aggregate increase in segregation is not experienced equally by households
of different races. In Figure 6, we present the evolution of the Coefficient of varia-
tion of the shares of each race all neighborhoods. Intuitively, a higher value means
that households of a given race are more concentrated in particular neighborhoods
that feature, by construction, a greater fraction of same-race households. White
households tend to be least concentrated (likely owing to their status as the most
prevalent) , and over the course of the simulation end up slightly more diffusely
spread over the Bay Area. Black, Hispanic and Asian households, however, end
up more concentrated, with the coefficient of variation of the Hispanic share of
neighborhoods increasing by a factor of six over the simulation period. This is
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Figure 4: Number of Neighborhoods In Flux (Simulated)
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Figure 5: Trajectory of Aggregate Segregation (Simulated)
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Figure 6: Trajectories of Segregation Levels by Race (Simulated)
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(d) Asian
Notes: Each panel shows the coefficient of variation of shares of a given race across
all neighborhoods. Simulation begins in December 2004.

consistent with our large estimate of the coefficient on sHjt (see Table 2), which is
more than twice as large as all other estimated racial response coefficients. The in-
herent tendency of Hispanic households to react very positively to highly Hispanic
neighborhoods is a primary driver behind the aggregate increase in segregation
that we find.

6 Conclusion

Any description of how households locate must appeal to the intuitive idea that
neighborhoods constantly evolve: their amenities are not static and their residents
are in flux. In this paper, we develop an empirical framework around this very
notion that allows us to study how the aggregate phenomenon of segregation
arises from the accumulation of many disaggregate residential choices that may
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be influenced, in part, by households’ expectations of the racial compositions of
neighborhoods. We find that households’ choices are influenced by the racial
compositions of prospective neighborhoods in systematic ways that are consistent
with racial homophily. The result of this homophily is a tendency for segregation
to increase in the absence of external shocks. Indeed, we find that at the end of
our sample period, neighborhoods are out of equilibrium by roughly 20% in terms
of racial segregation.

We view our approach as a platform for the empirical analysis of determinants
of segregation that can be easily adapted to various contexts. For example, our
approach can be used to study gentrification – neighborhood sorting between
income groups – given appropriate data. In addition, our approach can be used
to explore higher dimensional social interactions, as shown in our application
for multiple racial groups (White, Black, Hispanic and Asian households). We
hope that a deeper understanding of the determinants of sorting should enrich a
growing literature on the manifold effects of segregation on a variety of important
outcomes.

We should acknowledge several data deficiencies in our implementation that
may affect the interpretation of our results. First, because accurate, high fre-
quency data on the racial compositions of neighborhoods are not available from
administrative sources, we must construct a data set that uses information from
multiple sources. A key drawback of our approach is that we do not observe
the racial composition of renters over time. This could be a particularly acute
problem in a current analysis of urban segregation, as high home prices in many
metropolitan areas (especially the San Francisco Bay Area) have driven increas-
ing numbers of residents to the rental market. Because renters face relatively low
moving costs, we would expect sorting to be even more pronounced than what
we find. Second, because we do not observe the incomes and other attributes of
households at high frequency, we cannot perform companion analyses of sorting
along alternative dimensions. In addition to being of interest per se, a compari-
son of the degree of sorting along different socio-economic dimensions could prove
valuable in revealing the importance of different cleavages in our society.
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A Instrumental Variables and the Choice Model

In this appendix, we demonstrate the explicit connection between our instrumen-
tal variables and our empirical model of residential choice. To see more formally
how our identification strategy isolates the transitory component of interest, first
note that the dynamic model of residential choice described above implies that
N r
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t ), that is, the total number of households of each race

choosing neighborhood j in t can be written as a function of their current value of
each neighborhood, vr

t , their current moving cost, �r
t , the total number of house-

holds of that race located in j as of t� 1, and the total number of households of
race r in t, Irt . Further, the endogenous variable of interest in equation (14) can
be written as
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and It are respectively the vectors including N r
jt�1 and Irt for all r. Re-writing

equation (19) recursively:
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Similarly, we can write srjt�2(vt�2,�t�2,Njt�3, It�2) recursively until period 0:
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:= srjt�2(Vt�2,�t�2,Nj0, It�2), (21)

where Vt�2 := (vt�2,vt�3,vt�4, ...,v0) (�t�2 := (�t�2,�t�3,�t�4, ...,�0)) de-
notes the three-dimensional (two-dimensional) matrix that comprises the full his-
tory of these matrices (vectors) up until t�2. Thus, we know that srjt(vt,vt�1,�t,�t�1,Njt�2, It)

and srjt�2(Vt�2,�t�2,Nj0, It�2) are correlated to each other across neighbor-
hoods because of shocks in Vt�2 (or initial condition Nj0) that are correlated to
either (a) vt or vt�1 or (b) Njt�2. By controlling for vjt�1, we aim at ruling
out the correlation between srjt and srjt�2 due to channel (a), making sure this
correlation only operates via channel (b).
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