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Abstract

This paper develops a method to estimate the parental value of public school quality

with two novel features. First, it estimates the value of public school quality in the same

unit in which public schools’ costs are measured and private school tuition is charged: per

year, per child at each grade level. Second, it develops a novel approach to control for

unobservables correlated to school quality, including those generated by sorting. People

without school-age children enjoy neighborhood-level amenities but do not enjoy school-

level amenities, so data about their residential choice can be used to control for neighbor-

hood unobservables, isolating the value of school quality per se. I embed this idea into

a dynamic model of neighborhood choice, building on previously unconnected literatures.

Using the 2000 U.S. Census data, I find that parents tend to value school quality more in

elementary and high school grades relative to middle school grades. However, improving

public school quality currently costs more than is worth to parents even at the most val-

ued grades, so externalities in education are necessary to justify such investments. These

findings highlight the importance of improving the efficiency with which school resources

are spent. Keywords: School Quality, Willingness to Pay, Neighborhood Sorting, Neigh-

borhood Amenities, Dynamic Demand Estimation, Public Schools, Housing Market. JEL
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1 Introduction
In recent years, there has been a growing interest in evaluating the efficiency with which

public money is spent within the educational system. Information on the costs of running

different public schools are readily available and so are the schools’ quality measurements.

However, any cost-benefit evaluation needs to incorporate a third, crucial ingredient: the

parental value of public school quality. This paper estimates how much parents are willing

to pay for public school quality per year, per child at each grade level. This unit of mea-

surement is important for a comparison with the costs of improving public school quality

and with the tuition charged by competing private schools.

Using the 2000 U.S. Census data for Minnesota, I find that parents are, on average,

willing to pay $2,400, $1,400 and $2,700 yearly per child for an investment that improves

test scores by one standard deviation in elementary, middle and high school grades, respec-

tively. Such investments, however, cost at least $2,850 per pupil per year.1 These findings

highlight the importance of improving the efficiency with which public school resources

are spent; otherwise externalities in education are necessary to justify such investments.

Because there is no direct market for purchasing public schooling, researchers have

attempted to estimate the valuation of public school quality by comparing the prices of

similar houses in neighborhoods that are also similar except for their level of school quality

(Black and Machin (2011) provides a recent survey of this prolific literature). An important

concern in this literature is to fully control for the demographic composition of neigh-

bors, since otherwise they will bias the valuation estimates. Unobservable demographics of

neighbors are post-determined, as they are affected by school quality through neighborhood

choice. Thus, any bias due to omitted demographics of neighbors cannot be fully avoided

with the use of instrumental variables; instead, these need to be explicitly controlled for.2

The conventional way of handling this issue is to explicitly add observed demographics

as controls, but this may not be enough to absorb unobservables. Moreover, it might also

partially absorb the demographics of school peers, thus identifying only the value for the

component of school quality that is orthogonal to school peers. Of course, such measure of

the value of school quality is important for many policies aimed at changing school inputs,

particularly in the short-run, but it is difficult to use it to infer the value parents give to an

open enrollment policy, to a private school voucher system, or to other programs that enable

1See Greenwald, Hedges, and Laine (1996) and Hanushek (1997) for widely-known meta-analyses on the topic.
2Indeed, any initial change in school quality, no matter how random its source, will lead to the sorting of people

across observed and unobserved characteristics. Thus, at any point in time neighborhoods are observed not only
with different levels of school quality and prices, but also with systematically different neighbors.
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them to opt among schools with different peers.3

This paper complements this literature in two ways. First, it develops a new way of

controlling for omitted variables. It controls for unobservables, including the demographics

of neighbors, and it does so without controlling for the demographics of school peers. This

strategy can be implemented on its own or together with other approaches to control for

unobservables such as the use of boundary fixed effects (Black (1999)), which has been

successful at controlling for much of the endogeneity in this context. Second, it provides

estimates at a specific unit of measurement that facilitates cost-benefit analyses: per year,

per child at each grade level. Because families may intend to stay in the same house for

longer than one year, and because children of the same family may attend public schools in

different grades, the estimate obtained directly from housing choices spans more than one

year, one child and one grade.

The proposed approach has three steps. The first step estimates a dynamic model

of residential sorting. Because of moving costs, families are aware that their residential

choice today will influence their future residential decisions. Thus, this step extracts the

family’s per-year valuation of the neighborhood from the family’s total valuation of the

neighborhood (which also includes the continuation value of that neighborhood). The sec-

ond step extracts the family’s per-year valuation of public school quality from the family’s

per-year valuation of the neighborhood (which also includes the per-year valuation of other

amenities). Here, neighborhood unobserved amenities are proxied by neighborhood per-

year valuations of families without school-age children (including non-parents). These

proxies control for the characteristics of neighbors and other confounders without control-

ling for the characteristics of school peers, since in that year these families do not enjoy

the school amenities. The third step distributes the families’ per-year valuations of public

school quality among their children according to the grade each child attends, aggregat-

ing the information across all families to obtain an estimate of the parental value of public

school quality per year, per child at each grade level. Figure 1 illustrates these three steps

for a family with two children, one attending grade 3 and the other attending grade 6.

3For instance, estimates of the value of school quality incorporating peer characteristics can be helpful as an
input for models studying the impact of educational policies in the spirit of Epple and Romano (1998) and Ferreyra
(2007).
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Figure 1: Three-Step Approach

1st Step

Family’s Valuation of Neighborhood

2nd Step

Per-Year Valuation
of Neighborhood

Continuation Value
of Neighborhood

3rd Step

Per-Year Valuation
of Public School Quality

Per-Year Valuation
of Other Amenities

Per-child, Per-year
Valuation for Grade 3

Per-child, Per-year
Valuation for Grade 6

Notes: This figure illustrates the three-step approach for a family with two children, one attending grade 3 and the other attending grade 6. Step
1 extracts the family’s per-year valuation of the neighborhood from the family’s total valuation of the neighborhood (which also includes the
continuation value of that neighborhood). Step 2 extracts the family’s per-year valuation of public school quality from the family’s per-year
valuation of the neighborhood (which also includes the per-year valuation of other amenities). Step 3 divides the family’s per-year valuation of
public school quality based on each child’s grade of attendance.

To obtain estimates at the desired unit of measurement, the first step requires an es-

timation of a dynamic model with Decennial Census data - a cross-sectional dataset. To

accommodate this data restriction, I make a synthetic cohort assumption to connect the

contemporaneous residential choices of different families observed at different times in

their life cycle, as if these choices were from the same family along its own life cycle.4

For example, I assume that families with an 8-year-old child expect to have the same pref-

erences next year as families with a 9-year-old child have this year. I provide evidence

suggesting that this assumption is reasonable in the context of this paper. Moreover, I argue

that in practice small violations of this assumption should not bias the estimate of the value

of school quality, which is the main parameter of interest. Intuitively, violations of this as-

sumption might bias the intermediate estimator of the per-year value of the neighborhood,

but this bias should be absorbed by controls in the next step of the estimation procedure.

Methodologically, this paper relates to two separate literatures. The first literature

estimates the valuation of non-marketed goods with horizontal neighborhood sorting mod-

els using a discrete choice framework. Three papers are particularly relevant to this study.

4Epple, Romano, and Sieg (2012) make a similar synthetic cohort assumption in an overlapping generations
model to study the intergeneration conflict of provision of public education.
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Bayer, Ferreira, and McMillan (2007) embeds the boundary fixed effects approach into

a static discrete choice framework, building on insights from the Industrial Organization

(Berry (1994), Berry, Levinsohn, and Pakes (1995)), and estimate the valuations of public

school quality and neighbors’ demographic composition. More recently, Bayer, McMil-

lan, Murphy, and Timmins (2016) uses longitudinal data on homeowners to estimate the

valuation of violent crime, air pollution and racial composition with a dynamic discrete

choice model, building on insights from Rust (1987) and Hotz and Miller (1993). Fi-

nally, Mastromonaco (2014) builds on Bajari, Fruehwirth, Kim, and Timmins (2012) and

Bayer et al. (2016) to estimate the general equilibrium impact of school quality on wealth

accumulation, prices and the demographic composition of neighborhoods.5 Besides the

differences in methodology and underlying assumptions, Mastromonaco (2014) aims at ex-

plicitly studying the sorting due to school quality, while this paper aims at controlling for it.

As in Bayer et al. (2007), this paper estimates the valuation of public school quality with a

discrete choice framework, but with two key differences. First, it uses a different approach

to treat the endogeneity problem. Second, it estimates a dynamic rather than a static model.

The dynamic estimation approach I develop departs from standard approaches in a similar

way as Bayer et al. (2016), but imposes assumptions to accommodate estimation with the

Decennial Census data.

The second literature involves the use of a specific panel data method to control for

unobservables. This technique, discussed in Chamberlain (1977) and Pudney (1982), has

been applied to wage regressions (e.g., Heckman and Scheinkman (1987)), but so far has

not been applied to choice models. The main methodological contribution of the paper

lies in embedding this method in a discrete choice framework, thus connecting these two

literatures. The approach that arises from this connection is potentially useful for a wide

range of applications in demand estimation, because it provides a new way of controlling for

unobservables, including those inherently endogenous such as the neighbors’ demographic

compositions. The key idea is to construct control variables from observed choices of

others, not from observed characteristics. This is helpful because choices should reflect all

characteristics, including the ones unobserved to econometricians.

The rest of the paper is organized as follows: Section 2 presents the novel approach to

control for pre- and post-determined unobservables. Section 3 describes the data. Section

4 describes the identification strategy of the paper in three steps. Section 5 presents the

empirical results and robustness checks. Section 6 provides a more detailed discussion of

the results, and, finally, Section 7 offers some concluding remarks. Appendix A presents

5Bajari et al. (2012) develops a new approach to absorb unobservables in an hedonic framework by controlling
for previous house prices under a rational expectations assumption.
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some technical details, and Appendix B provides a Monte Carlo study of the approach to

control unobservables developed in the paper.

2 Controlling for Unobservables
This section presents the novel idea of controlling for pre- and post-determined unobserved

neighborhood amenities, including neighborhood demographics. For exposition purposes,

I first present the idea in a simple benchmark model with no moving costs.

2.1 Basic Setup

Suppose there are two groups of households in the data: parents and non-parents, indexed

respectively as p and np. Each household chooses a neighborhood to live among J options.

Each neighborhood is characterized by a set of amenities, with some of them unobserved

to the researcher. Because there is no moving costs, households consider only their flow

utility when deciding where to live.6 Let the flow utility of household i in group c when

choosing neighborhood j be

Ui,c, j = SQ j.qc +Pj.fc +xc, j + ei,c, j, c = p,np, j = 1, ...,J, (1)

where SQ and P are observed neighborhood-level measures of school quality and price, re-

spectively, x is the unobserved variable allowed to be correlated to the observed amenities,

and ei,c, j is an iid extreme value 1 (EV1) type error.

In this context, the marginal willingness to pay (MWTP) for school quality of group

c is measured as the marginal rate of substitution between SQ and P, or MWT Pc =�qc/fc,

hence qc and fc are the parameters of interest.

Collecting all the terms at the group-neighborhood level:

dc, j = SQ j.qc +Pj.fc +xc, j, c = p,np, j = 1, ...,J, (2)

where dc, j can be described as the mean flow utility of group c for neighborhood j.

Under the assumptions of this simplified model, it is easy to estimate dc, j with infor-

mation on households’ neighborhood choices as in Berry (1994),7 so this section focuses

6In the absence of moving costs, only differences in the level of amenities available in the particular period can
have an influence in household’s decisions.

7Following Berry (1994), if nc, j is the number of households of group c who live in neighborhood j, and if
dc,1 = 0 is normalized for each c, then d̂c, j = log(nc, j)� log(nc,1), j = 2, ...,J. Under the simplified assumption of
no moving costs there is a direct link between households’ neighborhood choices and their flow utility. In Section
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only on the endogeneity issues that may arise in the identification of qc and fc in equation

(2) once d , SQ and P are observed.8

The variable x in equation (2) accounts for unobserved neighborhood amenities.

These include not only pre-determined amenities but also post-determined ones, such as

amenities affected by sorting (e.g., composition of neighbors). P and SQ are in general

correlated to x , rendering any naive estimation of q and f biased. Next, I introduce a novel

way of controlling for unobservables in this context. The method is a generalized version of

a technique that was first proposed by Chamberlain (1977) and Pudney (1982) and was used

by Heckman and Scheinkman (1987) in the context of the estimation of wage regressions.

2.2 Controlling for Unobservables

The key idea that I exploit is that unobserved amenities correlated to school quality often

affect the neighborhood choice of people that do not care about school quality per se. This

allows me to use the choice of these people to proxy for these unobservables. To see this,

let xc, j in equation (2) be decomposed in two latent terms, where one is controlled and the

other is assumed exogenous. If xc, j := Q j.lc +µc, j, then equation (2) is re-written as

dc, j = SQ j.qc +Pj.fc +Q j.lc +µc, j, c = p,np, j = 1, ...,J, (3)

where the following identification condition is assumed to hold:

E[µc, j|SQ j,Pj,Q j] = 0, c = p,np, j = 1, ...,J. (4)

Intuitively, the idea behind the method is to use the d s of one group (e.g., non-parents)

as a proxy for Q in the equation of another group (e.g., parents). Since both parents and

non-parents, once they live in the same neighborhood, are exposed to the same level of

amenities Q, under certain conditions non-parental valuation of neighborhood j (i.e., dnp, j)

should provide all information about Q j necessary to absorb the source of endogeneity in

the equation of dp, j.

Substituting Q of the non-parental equation into Q of the parental equation in (3):

4 this assumption will be relaxed, which will make the identification of dc, j more cumbersome.
8Section 4 also discusses the implications of dc, j being estimated rather than directly observed.
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dp, j = SQ j.q̃ +Pj.f̃ +dnp, j.l̃ + µ̃ j j = 1, ...,J, (5)

where

q̃ := qp �qnp.l̃ , (6)

f̃ := fp �fnp.l̃ , (7)

l̃ := lp
lnp

and µ̃ j := µp, j �µnp, j.l̃ .

Under the selection on unobservables assumption (4), q̃ , f̃ and l̃ are identified as

the coefficients of SQ, P and dnp in equation (5), respectively. To identify qp and fp, the

actual coefficients of interest, two auxiliary assumptions need to be made. Here, I discuss

broadly the auxiliary assumptions made in the paper, but other assumptions can be made

in different contexts, depending on the prior information from the researcher about the

amenities of interest and the groups.

To identify qp via equation (6), I assume qnp = 0. Non-parents are assumed to not

value school quality in the flow utility sense. Note that the assumption concerns the school

quality services provided only during this year in the neighborhood, since at the moment

they do not have any child attending school.9 Additionally, in the flow utility sense non-

parents are allowed to value neighborhood amenities that are often proxied by school qual-

ity. For instance, non-parents may value living close to well educated neighbors, but they

do not value (in the flow utility sense) school peer effects due to children of well educated

neighbors. Thus, the “school amenity” is included in SQ and the “neighborhood amenity”

is included in Q.

A similar assumption about the coefficient of P is not plausible, as everyone is likely

to care about price even in the flow utility sense. Thus, to identify fp, I assume fnp = fp

instead.10 Under the testable assumption that l̃ 6= 1, fp is identified via equation (7) since

1� l̃ is identified through the coefficient of dnp, j in equation (5).

Under these assumptions, the MWTP for school quality is identified.11 In a more

general setting, but still under the assumption of linearity in equation (3), this approach

9As discussed in Section 4, they are allowed to be forward looking agents and to value school quality this year
in the cumulative utility sense, in a more general framework with moving costs.

10The actual assumption made in the paper, Assumption 2 described in Section 4, is similar but weaker than this
one.

11As Chamberlain (1977) noted, the use of d as proxy for Q introduces an omitted variables problem easily
solvable under the same assumptions with the use of d of a third group as IV. For this reason, Chamberlain (1977)
referred to this method as Proxy-IV. Section 4.2 provides further discussion on this topic.
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offers substantial flexibility: (a) More than one group can be used as proxy variable in

order to account for more than one unobserved amenity, hence weakening the selection

on unobservables assumption; (b) Groups can be defined so as to weaken the auxiliary

assumptions; (c) The auxiliary assumptions can be relaxed; (d) Tests that have the power

to detect violations of each of these assumptions can be performed. All these extensions

are implemented in Section 5. Section 4.2 presents the generalized version of the approach

implemented in Section 5.

Remark 1. Not necessarily all relevant unobservables will be controlled with this method.

The approach can control for only unobserved amenities valued by groups used as proxy. In

this example, unobservables such as neighbor’s characteristics will be proxied, but unob-

servables such as the presence of children’s parks in the neighborhood will not be proxied,

as non-parents do not value such amenity in the flow utility sense. Moreover, to be included

in Q the unobserved amenity needs to be non-excludable. That is, by assumption, different

groups are all exposed to the same level of the unobserved amenity Q once they choose

the same neighborhood, although they may value that amenity differently (i.e., l may vary

with c). In Appendix B, I present a Monte Carlo study of this method, arguing that in prac-

tice endogenous amenities that cannot be written as Q j.lc are still controlled for with the

method, as long as enough groups are added as proxy.

3 Data
The analysis is performed with the restricted-access, or long form, version of the 2000

Decennial Census of Population and Housing for the state of Minnesota. It is a 1/6 sample

of all families in the state, containing detailed information on the characteristics of houses,

families and individuals within families. This data is uniquely suited to the analysis in this

paper for two reasons. First, it identifies where families are living down to a census block,

which is a geographical area similar to a street block. This allows for linking each house

to one and only one public school for each grade using electronic boundary maps of all

elementary, middle, and secondary school attendance areas.12 The second unique piece of

information available in the data is the exact date of birth of each person. This allows for

linking each child in the family to one and only one grade using the kindergarten entry

rule of the state of Minnesota, which states that children turning five before September

1st will enter kindergarten that year, while children turning five after that date will enter

kindergarten the following year.
12These electronic boundary maps are difficult to obtain for a single school district, let alone for the whole state

for all grades. This is one of the primary reasons why I restrict the analysis to the state of Minnesota only.
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I merge this data with average student achievement data from the Minnesota Com-

prehensive Assessments (MCA), which is a statewide standardized test covering reading

and math at the school level.13 I define neighborhoods as elementary school attendance

areas, as middle and secondary school attendance areas are larger and contain one or more

elementary attendance areas.

Table 1 shows the summary statistics of the observed characteristics of the neighbor-

hoods as well as of families in our sample. The sample has 345 neighborhoods, with, on

average, over 800 houses each. The average monthly rent is $544, with a standard devia-

tion of $212. Additionally, the average house value is $144,215, with standard deviation

of over $59,219. The neighborhoods are quite diverse. For instance, the average income

of the neighborhoods is around $65,000 with standard deviation of $24,000, and the aver-

age proportion of neighbors with college degree or more is 28% with standard deviation of

17%. The average test score, which is the measure of school quality used in the paper, is

1,387, with standard deviation of 223. The amount of variation in this variable is similar to

the amount of variation of the test score used in previous studies.14

The analysis is restricted to 40 groups, which are disjoint subsets of the population

of families. Groups are defined in two different ways, depending on whether the family

has children (parents) or not (non-parents). For parents, groups are defined by the age of

the oldest child, ranging from ages 0 to 19. For non-parents, groups are defined by the age

of the head of the family, ranging from ages 31 to 50.15 Specifically for the groups with

children at school (i.e., groups 6 through 19), the sample is further restricted to only those

who attend a public school16 and who are attending the correct grade as prescribed by their

exact birthdate.17

13This data is publicly available at the Minnesota Department of Education
(http://education.state.mn.us/MDE/index.html).

14For example, Bayer et al. (2007) use a measure of school quality with the standard deviation amounting to
14% of the mean of the variable, comparable to 16% in this paper.

15The average age of the parent whose oldest child is 0 years old in our sample is equal to 31.
16The likelihood of each child attending a private school is relatively constant around 10% for all groups.
17Data on the grade each child attends are available in the census only at aggregated categories (kindergarten,

grades 1-4, grades 5-8, and grades 9-12), so exact date of birth is necessary to predict which exact grade within
each category the child is attending. If the predicted grade does not fall in the appropriate category (e.g., if the
child was held back a year), then this observation is excluded from the analysis. Less than 1% of the observations
are dropped because of this restriction.
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Table 1
Summary Statistics

Characteristics of the school attendance areas
Full Sample

Variables Mean St. Dev.

Neighborhood Characteristics
Average test score 1387 223
Number of houses 862 763
Average number of rooms 6.4 0.8
Average number of bedrooms 3 0.4
Average rent ($) 544 212
Average house value ($) 144,215 59,219

Neighbors’ Characteristics
Household Income ($) 65,127 24,389
Household employment: proportion head is employed (%) 71 13
Household employment: proportion both head and spouse are employed (%) 46 13
Head of family’s education: proportion with high-school degree only (%) 28 11
Head of family’s education: proportion with college degree or more (%) 28 17
Age of head of family 46 3.7
Proportion of families who own their house (%) 80 15
Head of family’s race: proportion of Black (%) 3 7
Head of family’s race: proportion of non-Black, non-White (%) 5 10
Proportion of families whose head is a parent (%) 62 6
Proportion of families that have one child (%) 17 4
Proportion of families that have two children (%) 22 7
Proportion of families that have three or more children (%) 16 6
Number of people of 65 years of age or older in the family 0.2 0.1
Number of people of 18 years of age or younger in the family 1.2 0.3
Proportion of families whose oldest child is attending a private school (%) 5 4

Number of school attendance areas 345
Number of families 153,102

Table 2 shows the summary statistics of the observed characteristics of the groups of

parents used in the analysis. The race distribution and employment status do not vary much

across groups. The average family income is between $56,000 and $71,000 for parents

in each group, and is similar for consecutive groups. The average proportion of parents

who are homeowners varies from 75% to 90%, with older parents being more likely to

be homeowners. Parents with younger children tend to be more educated; the proportion

of families with a college degree varies from 20% to 30% for these groups. The moving

rate also depends substantially on the age group, with younger parents moving more than

older parents. Finally, the proportions of parents who have two children and three or more

children understandably grow as parents get older.

11



Table 2
Summary Statistics

Groups of parents (by the age of the oldest child)
Group Household Home- Black Other High School College Employed Moved 2 Children 3 or More
(obs) Income ($) owner (%) (%) Race (%) Degree (%) Degree (%) (%) Last Year (%) (%) Children (%)

0 60,000 75 2 7 61 32 95 37 2 –
(1,802) (37,000) (43) (14) (26) (49) (47) (22) (48) (15) (–)

1 56,000 75 2 4 61 33 96 33 8 –
(3,109) (37,000) (43) (14) (18) (49) (47) (20) (47) (27) (–)

2 58,000 75 3 6 61 32 96 31 28 –
(3,968) (38,000) (44) (16) (24) (49) (47) (20) (46) (45) (–)

3 59,000 80 2 6 62 32 96 27 50 4
(4,477) (38,000) (40) (12) (23) (48) (47) (19) (44) (50) (19)

4 60,000 81 2 4 62 33 96 25 57 9
(4,546) (39,000) (39) (14) (19) (48) (47) (20) (43) (49) (29)

5 59,000 82 3 4 64 30 96 24 56 17
(5,015) (39,000) (38) (17) (19) (48) (46) (20) (43) (50) (37)

6 62,000 83 3 4 64 32 96 21 56 23
(4,516) (42,000) (38) (16) (20) (48) (46) (19) (40) (50) (42)

7 61,000 84 2 5 64 29 96 19 53 27
(5,078) (42,000) (37) (14) (21) (48) (46) (20) (39) (50) (45)

8 63,000 85 2 4 66 28 96 16 50 33
(5,258) (42,000) (36) (14) (21) (47) (45) (20) (37) (50) (47)

9 63,000 85 2 5 66 28 96 16 47 37
(5,344) (44,000) (36) (14) (22) (47) (45) (21) (37) (50) (48)

10 65,000 86 2 5 67 27 96 16 46 38
(6,098) (46,000) (35) (15) (21) (47) (44) (21) (37) (50) (48)

11 63,000 86 3 4 68 24 96 14 43 41
(6,127) (42,000) (35) (16) (20) (47) (43) (19) (35) (50) (49)

12 65,000 87 2 4 69 23 95 15 41 42
(6,386) (46,000) (33) (14) (20) (46) (42) (21) (36) (49) (49)

13 63,000 86 2 5 69 23 96 15 40 44
(7,285) (43,000) (34) (15) (21) (46) (42) (19) (36) (49) (50)

14 65,000 89 2 4 69 25 95 11 41 40
(7,018) (43,000) (31) (14) (21) (46) (43) (21) (31) (49) (49)

15 65,000 89 2 4 69 24 97 11 37 42
(8,179) (44,000) (31) (15) (21) (46) (43) (18) (31) (48) (49)

16 68,000 91 1 4 69 25 97 10 38 39
(8,719) (44,000) (29) (12) (19) (46) (43) (18) (30) (49) (49)

17 71,000 92 2 3 69 24 96 8 36 38
(9,853) (47,000) (26) (12) (17) (46) (43) (19) (27) (48) (49)

18 71,000 92 1 3 67 26 97 6 38 37
(10,481) (43,000) (27) (10) (18) (47) (44) (17) (24) (49) (48)

19 70,000 92 2 4 73 19 96 7 38 36
(6,039) (39,000) (27) (14) (21) (45) (39) (20) (26) (49) (48)

Notes: Standard deviations are reported in parenthesis except in the first column where the number of
observations is reported. Groups are defined by the age of the oldest child.
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Table 3
Summary Statistics

Groups of non-parents (by the age of the head of the household)
Group Household Home- Black Other High School College Employed Moved
(obs) Income ($) owner (%) (%) Race (%) Degree (%) Degree (%) (%) Last Year (%)

31 60,000 67 3 6 55 42 51 35
(1,319) (35,000) (47) (16) (23) (50) (49) (50) (48)

32 62,000 70 2 5 51 45 50 30
(1,161) (39,000) (46) (15) (22) (50) (50) (50) (46)

33 60,000 73 2 5 58 36 50 23
(1,103) (37,000) (45) (15) (21) (49) (48) (50) (42)

34 61,000 73 4 4 57 37 44 24
(1,158) (40,000) (44) (19) (19) (49) (48) (50) (43)

35 61,000 73 2 3 62 35 42 23
(1,083) (41,000) (44) (15) (17) (49) (48) (49) (42)

36 59,000 74 3 2 68 26 43 20
(1,098) (38,000) (44) (18) (15) (47) (44) (49) (40)

37 57,000 73 2 4 64 30 44 21
(1,031) (39,000) (44) (12) (19) (48) (46) (50) (40)

38 60,000 76 3 4 65 31 40 21
(1,048) (42,000) (43) (16) (19) (48) (46) (49) (40)

39 58,000 79 3 3 67 26 43 19
(1,073) (37,000) (41) (17) (18) (47) (44) (49) (40)

40 57,000 79 2 3 67 24 42 18
(1,107) (43,000) (41) (13) (18) (47) (43) (49) (39)

41 58,000 79 2 3 71 23 44 14
(1,176) (38,000) (41) (15) (17) (46) (42) (50) (35)

42 60,000 80 2 3 70 22 47 16
(1,211) (44,000) (40) (15) (17) (46) (42) (50) (37)

43 59,000 78 1 4 72 22 44 15
(1,119) (42,000) (41) (12) (19) (45) (41) (50) (36)

44 59,000 82 3 2 71 21 51 13
(1,255) (42,000) (38) (16) (16) (45) (41) (50) (34)

45 59,000 83 2 3 71 23 54 11
(1,280) (42,000) (38) (14) (16) (45) (42) (50) (31)

46 60,000 82 2 4 72 23 53 13
(1,351) (44,000) (38) (15) (19) (45) (42) (50) (34)

47 62,000 86 1 3 69 23 56 12
(1,484) (43,000) (34) (12) (16) (46) (42) (50) (32)

48 64,000 87 1 3 68 26 60 11
(1,542) (44,000) (33) (11) (17) (47) (44) (49) (31)

49 64,000 89 1 2 68 26 66 11
(1,776) (44,000) (32) (10) (15) (47) (44) (48) (31)

50 68,000 88 1 2 64 30 66 10
(1,806) (49,000) (32) (11) (13) (48) (46) (47) (30)

Notes: Standard deviations are reported in parenthesis except in the first column where the number of
observations is reported. Groups are defined by the age of the head of household.13



Analogously, Table 3 shows the summary statistics of the observed characteristics

of the groups of non-parents used in this analysis. The family income for groups of non-

parents is more similar across groups in comparison to parents, but the difference between

parents and non-parents of the same age is small. The proportion of non-parents who

are employed is around 55%, in contrast to the 95% found in parents. The proportion of

non-parents who are homeowners is also a little lower than that of parents, with older non-

parents having a higher likelihood of being homeowners. Similarly to parents, the moving

rate of non-parents depends substantially on the age group, with older non-parents overall

moving much less than younger ones.

Tables 2 and 3 show that there is substantial variation across groups in several im-

portant characteristics, which suggests that there is enough heterogeneity of preferences

for public school quality, rents and other amenities. This cross-sectional heterogeneity is

crucial to the implementation of the approach developed in this paper, since I exploit differ-

ential variation across groups with respect to the preferences of observed and unobserved

amenities.

4 Identification Strategy
This section explains the proposed strategy to identify the parental valuation for school

quality per year, per child at each grade level in three steps, as illustrated in Figure 1.

Basic Setup
The setup of the model is similar to the standard dynamic models in the literature (Arcidi-

acono and Ellickson (2011) provides a recent survey of this literature). Each year, families

choose a neighborhood with full information of the current year and only partial informa-

tion of the future. Families incur moving costs if they change neighborhoods, and they

anticipate they will have to incur moving costs in the future if they decide to move.

Specifically, there are J neighborhoods and C+1 groups of families, with each group

c containing nc,t families in year t. In the beginning of each year t, family i of group c

observes the state variable Si,c,t and decides the neighborhood they will live in t by maxi-

mizing the choice-specific value function Vj(Si,c,t) defined as

Vj(Si,c,t) :=Uj(Si,c,t)+bE
h

V (Si,c,t+1)
�

�

�

Si,c,t , di,c,t = j
i

, (8)
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where di,c,t = j if individual i chooses neighborhood j in period t. Uj(Si,c,t) is the fam-

ily’s flow (i.e., per year) indirect utility, b is the future discount (assumed known to the

researcher), and V (Si,c,t+1) := max
r

Vr(Si,c,t+1).

I start from standard assumptions in the literature (e.g., Rust (1987)):

Dynamic Assumptions. (Rust (1987)) Let Si,c,t := (Wi,c,t ,✏i,c,t).

1. Additive Separability: Uj(Wi,c,t ,✏i,c,t) := u j(Wi,c,t)+ ei,c,t, j, where ei,c,t, j is i.i.d. as

Extreme Value 1 type (EV1).

2. Conditional Independence: P (Wi,c,t+1|Wi,c,t ,✏i,c,t ,di,c,t = j)=P (Wi,c,t+1|Wi,c,t ,di,c,t =

j), where P (A|B) denotes the conditional probability of A given B.

3. Finite Support: The support of Wi,c,t is discrete and finite: Wi,c,t 2Wi,c,t = {w1
i,c,t ,w

2
i,c,t , ...,w

|T|
i,c,t},

|T|< •.

These three assumptions are standard in most papers estimating dynamic discrete

choice models (Arcidiacono and Ellickson (2011)). In words, the state variable is decom-

posed in two components: one component, ✏i,c,t , is idiosyncratic and has a trivial transition

over time, while the other component, Wi,c,t , has a more complex transition over time.

Importantly, ✏i,c,t is assumed irrelevant to predict Wi,c,t+1, given Wi,c,t and di,c,t .

As discussed in Rust (1987), these assumptions imply that Vj(Si,c,t) can be written as

Vj(Si,c,t) = v j(Wi,c,t)+ ei,c,t, j, (9)

with

v j(Wi,c,t) :=u j(Wi,c,t)+ (10)

+b Â
wi,c,t+12Wi,c,t+1

⇣

g + log
J

Â
r=1

exp(vr(wi,c,t+1))
⌘

P (Wi,c,t+1 =wi,c,t+1|Wi,c,t , di,c,t = j),

where g ⇡ 0.577 is the mean of the Extreme Value distribution. Next, I describe in detail

the three sequential steps to estimate the valuation of school quality per year, per child at

each grade level.

4.1 Step 1: Obtaining the Per-Year Valuation of the Neighbor-
hood

Obtaining the per-year valuation of each neighborhood requires estimating a dynamic choice

model. My estimation method departs from standard approaches in order to circumvent two
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major restrictions in the data. First, I do not directly observe di,c,t�1 in the data. I only ob-

serve di,c,t and whether i just moved from t � 1 to t. If the family does not move from

t �1 to t, then di,c,t�1 = di,c,t ; otherwise, I have no information about di,c,t�1, as the family

may have moved within neighborhood.18 I circumvent this problem by assuming that fam-

ilies first decide whether to move (thus incurring a moving cost), and then, conditional on

moving, they decide their destination. The moving cost parameter is assumed the same no

matter the origin or destination neighborhood. This allows me to identify the moving cost

parameter only off families who do not move from t �1 to t. The second restriction is that

the data is cross-sectional. As discussed below, this restricts the types of assumptions I can

make with respect to families’ expectations of their own valuation of each neighborhood in

the future.

To summarize my approach: first, I estimate the unobserved components of the state

variable Wi,c,t directly, for all c; next, I plug in these estimates to calculate the conditional

transition probabilities P (Wi,c,t+1 =W |Wi,c,t , di,c,t = j) under a synthetic cohort assump-

tion. Finally, I calculate u j(Wi,c,t) via equation (10). I describe this approach in more detail

below.

The choice-specific value functions for year t are written as

v j(Wi,c,t) := Dc,t, j +Movei,c,t, j.Fc,t (11)

where Wi,c,t :=
�

{Dc,t,r,Movei,c,t, j}J
r=1,Fc,t

�

. Dc,t, j can be interpreted as the mean cumula-

tive value of neighborhood j among all families of group c as of period t. Fc,t is the moving

cost parameter. Movei,c,t, j :=
⇣

Stayeri,c,t .1{ j 6=di,c,t�1}+(1�Stayeri,c,t)
⌘

, where Stayeri,c,t is

an indicator for whether family i stayed in the same house from t �1 to t, and 1{ j 6=di,c,t�1} is

an indicator variable for whether the expression in brackets is true. Intuitively, the moving

cost parameter Fc,t will be included in the utility of a family of group c who moved for all

j (so Fc,t is not identified off movers, as it is a constant across all neighborhood options).

In contrast, Fc,t will be included in the utility of a family of group c who stayed in the same

house from t �1 to t only if j 6= di,c,t�1. For stayer families, we observe di,c,t�1 because in

that case di,c,t�1 = di,c,t .

This specification reflects a departure from standard methods (e.g., Rust (1987); Hotz

and Miller (1993)). The key difference is what represents a “state variable” in both ap-

proaches. In standard approaches, state variables are defined to be primitives of the model,

18Decennial Census contains data on where the family was located 5 years ago, allowing me to verify that indeed
some families move within neighborhood.
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such as the observed amenities of the neighborhood. Thus, choice specific value functions

are written as a complicated function of these state variables.19 An alternative approach

followed here is to specify state variables not as primitives. This way, choice specific value

functions can be written as a simple function of these more complex state variables. This

allows for the estimation of a dynamic model using static discrete choice techniques (Berry

et al. (1995)). A similar departure from standard methods is exploited in Bayer et al. (2016)

(see Remark 2).

Dc,t, j, the mean cumulative value of neighborhood j from the perspective of group c as

of period t, is a particularly complex “reduced-form” state variable. It encompasses much

of the variables that are typically defined as state variables in standard approaches. For

instance, observed and unobserved amenities varying at the neighborhood level (including

the ones valued differently across groups), or even amenities varying at the neighborhood-

group level, are included in Dc,t, j. Importantly, the continuation value from t + 1 onwards

of neighborhood j from the perspective of group c20 is included in Dc,t, j too.

Using this approach instead of a standard approach involves a practical trade-off. On

the one hand, in this approach it is difficult to model heterogeneity in v j(Wi,c,t) across fam-

ilies within group c. Any heterogeneity term should be a complicated function of all neigh-

borhoods (not only neighborhood j) because of the continuation value. For instance, in

order to allow for families to have heterogeneous preferences for a given observed amenity

within group c, v j(Wi,c,t) should be written not only as a function of the level of that

amenity in neighborhood j but also as a function of the levels of that amenity for all neigh-

borhoods k 6= j.21 On the other hand, this approach allows the econometrician to avoid

making some assumptions about expectations that are difficult to test in the data.22 The

19As pointed out by Arcidiacono and Ellickson (2011) (p. 369), “the main difference between static and dy-
namic discrete choice is that, in the former, the payoffs will generally be expressed as linear functions of the state
variables (because they are primitives), whereas in the latter, the expressions are more complicated (...) How much
more complicated will depend on the number of choices, the number of possible states and the distribution of the
structural errors.”

20This is the expected valuation of each neighborhood k next year from the perspective of a family of group c,
weighted by the corresponding expectation to live next year in k given that the family lives in neighborhood j in
year t.

21In the context of this paper, I allay concerns about this issue in three ways. First, I define groups along
a dimension that should reflect much of the heterogeneity in my context. For instance, I define the groups of
interest (c = 6, ...,18) to be families with children attending public schools at different grades. Second, I assume
that the moving cost parameter, the only parameter of the state variable that I allow to be heterogeneous within
groups, is the same irrespective of the neighborhood of origin or destination. Third, I re-estimate the first step
with an additional term in equation (11) reflecting the interaction of observed amenities in j with family observed
characteristics, and find virtually no change in the main school quality valuation estimates obtained in the second
and third steps. This is not surprising, as the method to handle the endogeneity problem in the second step is
helpful to mitigate any bias from the first step, as I discuss in Remark 4.

22Indeed, these are assumptions about expectations as of period t. These do not necessarily relate to how the level
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approach makes assumptions about how families of group c expect Dc,t+1, j to be as of pe-

riod t. As discussed above, Dc,t+1, j is an implicit function of the levels of all amenities of

all neighborhoods valued at the corresponding preferences in t 0, with t 0 = t + 1, ...,T . By

making assumptions about how families expect this “reduced-form” state variable to evolve

from t to t +1, the method avoids spelling out this implicit function, thus avoiding making

specific assumptions about expectations. Specifically, it avoids assuming the value of the

time horizon T ; similarly, it avoids assuming families’ specific expected transitions on the

level of and preference for each amenity (observed or unobserved to the econometrician)

from t to t 0, with t 0 = t +1, ...,T .

In order to estimate u j(Wi,c,t) with cross-sectional data from year t only, I make the

following assumption about how families expect their state variables to evolve from t to

t +1:

Synthetic Cohort Assumption. Let Wi,c,t+1 :=
�

{Dc,t+1,r,Movei,c,t,r}J
r=1,Fc,t+1

�

. Fami-

lies have the following expectation in year t = 2000:

If c are parents (c = 0, ...,18) :

P

0

B

@

�

{Dc,t+1,r,Movei,c,t+1,r}J
r=1,Fc,t+1

�

| {z }

Wi,c,t+1

=
�

{Dc+1,t,r,1{r 6= j}}J
r=1,Fc+1,t

�

| {z }

W

|Wi,c,t , di,c,t = j

1

C

A

= 1

If c are non-parents (c = 31, ...,49) :

P

0

B

@

�

{Dc,t+1,r,Movei,c,t+1,r}J
r=1,Fc,t+1

�

| {z }

Wi,c,t+1

=
�

{D0,t,r,1{r 6= j}}J
r=1,F0,t

�

| {z }

W 1

|Wi,c,t , di,c,t = j

1

C

A

= Pc,t

P

0

B

@

�

{Dc,t+1,r,Movei,c,t+1,r}J
r=1,Fc,t+1

�

| {z }

Wi,c,t+1

=
�

{Dc+1,t,r,1{r 6= j}}J
r=1,Fc+1,t

�

| {z }

W 2

|Wi,c,t , di,c,t = j

1

C

A

= 1�Pc,t

where Pc,t := n0
c+1,t/(n

0
c+1,t +nc+1,t), nc+1,t is the number of families of group c+1, D0,t,r

and F0,t refer to the parameters from the group of parents whose oldest child is zero years

of age (i.e., a newborn), and n0
c+1,t is the number of families whose head is c+ 1 years of

age and whose oldest child is a newborn.

This assumption states that parents expect to have the same mean cumulative valua-

tion of each neighborhood (and moving costs) next year as parents one cohort ahead have

of amenities and their preferences actually evolve over time. Thus, there are some limits on how in practice one
could weaken these assumptions with access to longitudinal data, since what is actually needed are data eliciting
families’ expectations. See Remark 2.
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this year. The assumption is similar for non-parents, but the transition is more complicated,

since they may become parents next year. There is a likelihood Pc+1 of becoming a parent

(of a newborn), and a likelihood 1�Pc+1 of keep being a non-parent. By assumption,

families perceive these probabilities to be the ones observed in period t.

This assumption is likely to be a good approximation in the context of Minnesota

around the year 2000. The majority of schools in the state experienced only small changes

in enrollment and demographic composition in the years leading up to 2000.23 In Remark

4 and Appendix B, I argue that small violations of this assumption should not affect the

estimates of interest.

Let dc,t, j denote the average of u j(Wi,c,t) across all families i belonging to group

c: dc,t, j := 1
nc,t

Âi2Ic [u j(Wi,c,t)], where Ic denotes the set of families in group c. Then the

synthetic cohort assumption together with equation (10) imply:

If c are parents (c = 0, ...,18) :

dc,t, j :=
1

nc,t
Â
i2Ic

h

Dc,t, j +Movei,c,t, j.Fc,t
| {z }

v j(Wi,c,t)

�b

⇣

g + log
J

Â
r=1

exp
�

Dc+1,t,r +1{r 6= j}.Fc+1,t
�

| {z }

vr(Wi,c,t+1)

⌘i

.

(12)

If c are non-parents (c = 31, ...,49) :

dc,t, j :=
1

nc,t
Â
i2Ic

h

Dc,t, j +Movei,c,t, j.Fc,t
| {z }

v j(Wi,c,t)

�

�b

⇣

g +Pc,t . log
J

Â
r=1

exp
⇣⇣

D0,t,r +1{r 6= j}.F0,t
| {z }

v j(W 1
i,c,t+1)

⌘⌘

+(1�Pc,t). log
J

Â
r=1

exp
⇣

Dc+1,t,r +1{r 6= j}.Fc+1,t
| {z }

v j(W 2
i,c,t+1)

⌘⌘i

.

(13)

As shown in equations (12) and (13), dc,t, j is written only as a function of Dt :=
⇣n

{di,c,t ,{Movei,c,t,r}J
r=1}i2Ic,t ,n0

c,t ,nc,t

oC

c=0

⌘

and pQ :=
⇣

{{Dc,t,r}J
r=1,Fc,t}C

c=0,b
⌘

. Dt comes

directly from the 2000 Decennial Census data, and pQ can be estimated with Dt as in Berry

et al. (1995), with b assumed equal to 0.95. Appendix A describes the details of the esti-

mation process.

Remark 2. It is useful to see how these assumptions could be relaxed if we had access

to longitudinal data instead. This helps relate the dynamic estimation approach used here

23The main valuation estimates barely change when the analysis is restricted to only schools where this assump-
tion is most likely to hold, namely those below the median in terms of changes in enrollment or demographic
composition.
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with the approach developed in Bayer et al. (2016). With longitudinal data, I could model

the expected transition of the choice specific value functions more flexibly. For instance,

Bayer et al. (2016) estimate the expected choice specific value function in t + 1 with a

rational expectations assumption implied by their equation (25) (p. 915), reproduced here

for t +1:

vt

j,t+1 = r

t

0, j +
L�1

Â
l=0

r

t

1,lv
t

j,t�l +
L�1

Â
l=0

X 0
j,t�lr

t

2,l +r

t

3, j(t +1)+w

t

j,t+1

vt

j,t+1 in their context is analogous to Dc,t+1, j in the context of this paper, where t is anal-

ogous to c (although the definitions of groups are completely different).24 Individuals of

type t by assumption project the true value of vt

j,t+1 onto (vt

j,t�l,X
0
j,t�l) for l = 0, ...,L�1

to estimate their predicted value of vt

j,t+1 as of period t. Thus, individuals of type t use

both current (t) and past (t � 1,...,t � (L� 1)) information to make this prediction, where

“information” in their context corresponds to both mean cumulative valuations of the same

type and neighborhood observables. In contrast, cross-sectional data prevents me from as-

suming that individuals project the true value of Dc,t+1, j onto their information set (as the

dependent variable in the equation above, Dc,t+1, j, cannot be estimated with data from t).

Moreover, cross-sectional data restricts me to assume families use only current information

to predict Dc,t+1, j (as Dc,t�l, j for l = 1, ...,L�1 cannot be estimated with data from t).

4.2 Step 2: Obtaining the Per Year Valuation of Public School
Quality

In what follows, the year index t = 2000 is suppressed for simplicity. d̂c, j, the estimated

per year valuation of neighborhood j for group c obtained from step 1, is written linearly

as a function of the neighborhood amenities:

d̂c, j = SQ jqc +Pjfc +xc, j, (14)

where SQ j and Pj are respectively measures of the level of public school quality and the

price of neighborhood j, qc and fc are preference parameters, and xc, j is an unobserved

term that varies at the group-neighborhood level. x includes not only unobserved amenities

of neighborhood j. It also includes any error due to violations of the dynamic and the

24Bayer et al. (2016) focus their analysis on homeowners, so they also rightly consider important concerns
related to homeowners’ wealth that are outside of the scope of this paper.
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synthetic cohort assumptions made in the previous section. Thus, the discussion below

allows for d̂c, j to be a potentially biased estimator of dc, j (see Remark 4).

Identification of qc and fc in (14) is difficult to obtain because xc, j is generally corre-

lated to SQ j and to Pj. To address this endogeneity problem, I use a novel approach. The

term xc, j is decomposed into a term including a finite number of unobserved neighborhood-

level amenities, Q j, plus a random term µc, j. The mean flow utility can be rewritten as

d̂c, j = SQ jqc +Pjfc +

xc, j
z }| {

Q jlc +µc, j, (15)

where Q j is a vector of fixed size R.

The next assumption states that all endogeneity of equation (15) can be captured by R

such unobserved amenities, with allowance for different valuation weights across groups.

Intuitively, Assumption 1 weakens as R becomes larger.

Assumption 1. Selection on Unobservables

E [µc, j|SQ j,Pj,Q j] = 0,

where µc, j is defined in equation (15).

If Q was observed, then the parameters of equation (15) would be trivially identified.

Instead, I will proxy for Q. The procedure is as follows. First the groups are divided

in three subsets. The d s of the groups in the first subset will be used as proxy for Q in

the equations of the second subset. This procedure will solve the original endogeneity

problem, but it will introduce a new source of endogeneity that is easily solved under the

same assumptions using the d s of the groups in the third subset as IVs for the d s of the

groups in the first subset.

If Rs is the number of groups in subset Gs, I write three systems of equations, one for

each subset:

�̂ j(1) =SQ j✓(1) +Pj�(1) +Q j�(1) +µ j(1), (16)

�̂ j(2) =SQ j✓(2) +Pj�(2) +Q j�(2) +µ j(2), (17)

�̂ j(3) =SQ j✓(3) +Pj�(3) +Q j�(3) +µ j(3), for j = 1, ...,J (18)

where SQ j and Pj are scalars; Q j is a 1⇥R vector; � j(s), µ j(s), ✓(s) and �(s) are each 1⇥Rs

vectors; and �(s) is a R⇥Rs matrix, s = 1,2,3.
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Solving equation (16) for Q and substituting it into equation (17)25:

�̂ j(2) =SQ j

✓̃(2)
z }| {

⇣

✓(2)�✓(1)�̃(2)

⌘

+Pj

�̃(2)
z }| {

⇣

�(2)��(1)�̃(2)

⌘

+�̂ j(1)�̃(2) +

µ̃ j(2)
z }| {

µ j(2)�µ j(1)�̃(2), j = 1, ...,J

(19)

where �̃(2) ⌘�0
(1)

⇣

�(1)�
0
(1)

⌘�1
�(2) is an R1⇥R2 matrix measuring the relative preferences

of the unobserved amenities for groups in subsets 1 and 2. In equation (19), the mean

utilities of the groups in G2 are written as a function of the observed amenities and the

mean utilities of the groups in G1, and no longer as a function of Q.

Note that, since µ̃ j(2) is correlated with � j(1) because of equation (16), equation (19)

does not identify ✓̃(2), �̃(2) and �̃(2) directly via OLS. However, as pointed out by Cham-

berlain (1977), under the previous assumptions � j(3) can be used as IV for � j(1), hence ✓̃(2),

�̃(2) and �̃(2) are nonetheless identified via 2SLS.

Still, the parameters of interest qc and fc for c 2 G2 are not directly identified from

✓̃(2), �̃(2) and �̃(2), hence additional assumptions need to be made. According to equation

(19), the parameters of interest are implicitly given by the two systems of equations:

q̃c = qc �✓(1)l̃c, c 2 G2, (20)

f̃c = fc ��(1)l̃c, c 2 G2. (21)

The systems of equations (20) and (21) have each R2 equations and R1+R2 unknowns

(qc and fc for c 2 G1 [G2). If at least R1 restrictions in the parameters of each of these

systems are made, then qc and fc are identified for each c in G2.

In Section 5, this method is implemented with G2 = {6, ...,18} since the oldest child

of the families of these groups are observed to be attending respectively kindergarten

through grade 12 in a public school. The rest of the groups are divided between G1 and

G3 depending on the specification, provided that R3 � R1 holds. Assumption 2 makes

exclusion restrictions that guarantee the identification of qc and fc, c 2 G2.

Assumption 2. Exclusion Restrictions:

1. qc = 0, c 2 G1,

2. fc = f6 c 2 G1.
25 R = rank(�(1)), as discussed in Remark 3.
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To identify qc, c 2 G2, I assume qc = 0 for the groups used as proxy. Groups c =

31, ...,49 are non-parents, so they should not value public school quality in the flow utility

sense, because they do not enjoy school amenities in that year. Moreover, groups c= 0, ...,5

are parents but do not have a child attending public school this year. So, following the same

logic, they should also not value public school quality in the flow utility sense. This implies

that any group except groups in G2 = {6, ...,18} is an appropriate candidate to be included

in G1.

To identify fc, c 2 G2, I assume that groups used as proxies as well as group 6 have

on average the same flow value for the amenity P. This assumption can be relaxed if

needed, but in practice doing so does not change the main results (see Section 5). This is

not surprising, given how income tends to change little among those groups in Tables 2 and

3.

Under Assumptions 1 and 2, qc and fc for c 2 G2 are identified. The average per-year

valuation of school quality for families in group c, also known as the average marginal

willingness to pay (MWTP) for school quality, represents how much these families are

willing to trade-off school quality for rents:

MWT PSQ
c :=�qc

fc
. (22)

Remark 3. Intuition: Because R  R1, the more groups are included as proxy, the larger

is the dimension of Q that can be controlled for, and thus the weaker is Assumption 1.

Also, the heterogeneity of groups included as proxy is important. Technically, �̂ j(1) needs

to span the space generated by the columns of Q so that all endogeneity is controlled for.

This requires different groups to value Q differently. For instance, if the average income

of neighbors and the existence of a children’s park are both important unobservables, then

using two non-parental groups as proxy will not help to span the space of the children’s

park unobservable, as non-parents do not enjoy it that year. However, using as proxy one

non-parental group and one group of parents without school-age children will span the

space of both unobservables, as this latter group does enjoy children’s park in that year.

Heuristically, when a new group is included in G1 and the adjusted R2 rises significantly, it

suggests that one more dimension of Q is being spanned.

Remark 4. What if d̂c, j is Biased? Many assumptions were made to identify dc, j in step

1, so it is important to discuss the implications of violations of those assumptions. Any

violation of the assumptions made in step 1 can bias the main estimates only to the extent

that d̂c, j is biased. Let hc, j := d̂c, j � dc, j denote this bias. hc, j should be a component of

xc, j defined in equation (14). Thus, violations of any assumption made in step 1 constitute
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one more potential source of endogeneity that the method described in this section aims to

control for. In particular, Assumptions 1 and 2 are sufficient to guarantee that MWT PSQ
c ,

c 2 G2 are identified, even if the assumptions made in step 1 do not hold. For instance,

consider a situation where group c expects neighborhood j to be gentrifying (a violation

of the synthetic cohort assumption) as the only potential source of endogeneity. Then dc, j

would be overestimated in the first step, since E(Dc,t+1, j)> Dc+1,t, j,D0,t, j (this can be seen

in equations (12) and (13)). If hc, j can be absorbed by Q j.lc, then it does not bias our

estimates of MWT PSQ
c , c2G2. In Appendix B, I present a Monte Carlo study that considers

the possibility of d̂c, j being biased in ways that cannot be absorbed by Q j.lc. I show that

its impact on the bias of MWT PSQ
c , c 2 G2 is minimal as long as R1 is sufficiently large

relative to R.

Remark 5. At first glance it may appear to be inconsistent to specify both the choice-

specific value functions in (11) and the flow utilities in (14), but this is not the case. Equa-

tion (11) does not specify how the choice-specific value functions vary with each amenity

of the neighborhood. The proposed approach only makes such decomposition at the flow

utility level, according to equation (14).

4.3 Step 3: Obtaining the Valuation of Public School Quality
Per Year, Per Child at Each Grade Level

Step 2 in Section 4.2 estimated the MWTP for school quality per year, per family for groups

c 2 G2 = {6, ...,18}. In the final step, these estimates are used to calculate the MWTP for

school quality per year, per child, and per grade from kindergarten to grade 12.

Families of group c may have more than one child, and may have children attending

different grades. Let Ni,c,g be the number of children from family i of group c who are

observed to be attending grade g in the data, and let the average number of children attend-

ing grade g across all families from group c be defined as Nc,g := 1
nc

Âi2Ic Ni,c,g. Families

of groups 6 through 18 have their oldest child attending grade kindergarten through grade

12, respectively. The MWTP that is estimated in step 2 is written as a weighted sum of the

MWTP per year-child-grade of all families, using information on the grade that the children

in each family are attending:

MWTPSQ
c =

c�6

Â
g=0

MWTPSQ
c,g.Nc,g, c = 6, ...,18 (23)

where g= 0, ...,12 indexes grades kindergarten through grade 12, respectively, and MWTPSQ
c,g
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is defined as the MWTP for school quality per year-child-grade g for families of group c.

Assumption 3 below guarantees identification by stating that a family values the

school quality for each child only as function of the grade that child is attending:

Assumption 3.

MWTPSQ
c,g = MWTPSQ

g 8c 2 G2, g = 0, ...,12 (24)

This assumption implies, for instance, that a family’s valuation of school quality per

child for a specific grade does not change as a function of birth order, or as a function of

sibling spacing. MWTPSQ
g , implicitly defined in Assumption 3, is referred to as the MWTP

for school quality per year-child-grade g, for grades g= 0, ...,12, and is the main parameter

of interest in this paper.

Substituting equation (24) into equation (23):

MWTPSQ
c =

c�6

Â
g=0

MWTPSQ
g .Nc,g, c = 6, ...,18 (25)

The system of equations (25) has 13 unknowns (MWTPSQ
g , g = 0, ...,12) and 13 lin-

early independent equations (c= 6, ...,18), which guarantee the identification of the MWTP

for school quality per year-child-grade, from kindergarten to grade 12. The estimation of

steps 2 and 3 is carried out simultaneously via GMM, with unknown parameters MWTPSQ
g ,

g = 0, ...,12, l̃c and fc, c = 6, ...,18.26

Remark 6. Robustness Checks: Under Assumptions 1, 2 and 3, this three-step approach

identifies the valuation of school quality per year, per child at each grade level. This ap-

proach can be tailored to perform a variety of robustness checks: (a) Assumptions 2 and 3

can be each directly tested; (b) Groups can be defined so as to weaken Assumptions 1, 2

and 3. (c) The model is over-identified, so these assumptions can be tested jointly. All such

checks are implemented in Section 5.

5 Empirical Results
This section presents the main results and robustness checks of the paper, explaining along

the way how the methodology presented in Section 4 is implemented. Table 4 shows the

main results and robustness checks of the paper.27 This table shows the MWTP per year,

per child, and per grade as a percentage of rent for an increase of 5% in school quality.

26
q̃c is identified by q̃c = MWTPSQ

c .fc, where MWTPSQ
c is given by (25).

27This table shows results for b = .95. The results do not change significantly for choices of different b s in the
range .90 through .99.
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The rows represent the grades, and the columns represent different specifications. Column

I refers to a baseline panel regression of the mean flow utilities of groups 6 to 18 on the

average school quality and the average rent of each neighborhood, without any control

variable. The GMM estimates of this regression imply a MWTP of around 10% of rent for

primary school, with 16% for kindergarten, very low and not significant values for middle

school, and around 7% for high school.

Column II shows the MWTP estimates of the same panel regression, still not con-

trolling for unobservables, but adding a list of control variables that account for observed

amenities: average income of neighbors, proportion of Black neighbors, proportion of

neighbors with race other than White or Black, proportion of neighbors with college degree

or more, average number of rooms and proportion of homeowners in the neighborhood. The

estimates of this regression show a substantial increase on the MWTP for school quality in

comparison to the baseline specification. This result is expected, since school quality and

price are likely both positively correlated to unobserved amenities, with price being likely

the largest source of endogeneity.28 However, as described above, explicitly adding socio-

demographic control variables may change the interpretation of the MWTP estimates, so

columns I and II are not necessarily directly comparable. The MWTP estimates are very

high for elementary and high school grades, with 38% for kindergarten and 23% for 12th

grade, but around 6% for middle school.

Columns III through VI of Table 4 show the results of the GMM estimation using

the proposed method of controlling for unobservables, as described in Sections 4.2 and

4.3. The groups are divided into three sets: the proxy set, the set of interest and the set

of instruments. The set of interest includes groups 6 through 18, which correspond to the

families with school age children that attend a public school in the correctly pre-specified

grade. Other than that, the decision of the groups included in each set follows the general

guidelines provided in Appendix B. Columns III through VI differ from each other with

respect to the number of proxies used. Intuitively, the more proxies are added, the higher is

the space of unobservables that can be spanned, provided the added proxy group values the

unobservables differently from the other proxy groups. As more proxy variables are added,

I assign more groups to the set used as instrumental variables. For each specification,

the lists of groups used as proxies and of groups used as instrumental variables are noted

in the table. Column III shows the results using one proxy: the mean flow utilities of

group 34. The results are shown to be similar to the results of column II, even though the

28Heuristically, under the presence of endogeneity in the baseline regression, both qs and fs are likely overesti-
mated, but fs are likely more so, as prices are likely more endogenous than school quality. Because f is included
in the denominator, naive OLS estimates would tend to be biased downward.

26



specification of column II adds a wide list of observed control variables. Moreover, the R2

of the regression of column III is substantially larger than the R2 from column II, suggesting

that adding one proxy variable controls for more variation of the dependent variable than

adding the list of observed amenities used in column II. This is particularly desirable, given

that the interpretation of the MWTP coefficient does not change by adding this generic

control variable.

There may exist confounding amenities valued by parents with children of school age,

but not valued by non-parents, such as the availability of children’s parks. Column IV adds

another proxy variable to control for such amenities: the mean flow utilities for group 4.

The MWTP estimates reduce a lot, especially for elementary school. This is expected, since

group 4 is likely to enjoy the same amenities that parents with children of similar ages tend

to enjoy. Also, the standard errors become larger because the multicollinearity increases as

more proxies are added (see discussion in Appendix B). Likewise, it is possible that two

unobservables are not enough to control for the endogeneity problem. There could be an

unobservable amenity, for example, that only relatively older people value or are exposed

to. For this reason, column V adds one more proxy: the mean flow utilities from group 41.

The estimates reduce even more for both primary and secondary school.

Finally, column VI adds to the specification of column V another proxy variable:

group 2. The fit does not improve significantly, and the results are similar to the ones in

column V. Columns V and VI together show that three unobservable amenities seem to

be enough to take care of the endogeneity with regard to the variables school quality and

average rent.29

29As robustness check, I changed the groups included in G1 and G3 and find the same results, provided that one
group of parent with c  5 and two groups of non-parents c0 and c00 with c0 and c00 sufficiently different from each
other are included in G1.
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Table 4
Main Results

MWTP (as % of rent) per year-child-grade for an increase in 5% in school quality

Grade I II III IV V VI

K 15.72** 38.10** 37.75** 21.09** 13.46* 10.58
(5.54) (5.82) (3.64) (5.88) (8.14) (8.88)

1 9.97** 27.89** 28.52** 19.25** 14.99** 14.25**
(4.24) (4.57) (2.71) (3.53) (6.19) (6.24)

2 4.02 19.28** 20.99** 16.03** 11.25 10.26
(3.89) (4.16) (2.48) (5.57) (7.52) (7.95)

3 -0.45 8.19** 13.13** 14.07** 12.38** 12.80**
(3.16) (3.89) (2.11) (3.17) (5.62) (5.54)

4 -3.53 4.16 7.97** 9.24** 10.70* 9.88*
(2.64) (3.17) (1.74) (2.85) (5.09) (5.71)

5 -1.33 6.44* 9.58** 9.96** 10.74* 9.97
(3.19) (3.37) (2.14) (4.14) (5.73) (6.43)

6 -0.17 5.84* 9.44** 8.61** 7.70 7.98
(3.21) (3.12) (1.96) (3.65) (5.90) (6.23)

7 -1.74 6.95** 10.58** 7.67** 6.87 6.36
(3.11) (3.21) (1.83) (6.12) (6.87) (7.79)

8 -0.88 8.03** 11.26** 8.73** 5.80 5.30
(3.08) (3.57) (2.15) (4.11) (6.21) (6.63)

9 5.04 14.24** 17.43** 14.08** 12.46** 11.80*
(3.36) (3.65) (2.01) (5.19) (5.89) (6.79)

10 3.73 15.74** 19.07** 18.68** 14.59** 13.93**
(3.02) (3.93) (1.93) (3.57) (4.89) (5.61)

11 5.36 17.56** 20.96** 14.69** 13.05** 11.35
(3.56) (4.21) (1.92) (5.64) (6.55) (7.67)

12 8.75** 22.95** 26.41** 18.72** 16.17** 14.20*
(4.37) (4.76) (2.25) (6.11) (6.75) (7.92)

Controls? No Yes No No No No

Proxies (groups) – – 34 34 34, 41 34, 41
4 4 2, 4

Instruments (groups) – – 36–38 36–38 36–38, 42–44 36–38, 42-44
1, 3 1, 3 0, 1, 3, 5

P-value for J test – – .00** .03** .35 .32

Adjusted R-squared .0221 .2517 .3839 .3980 .4162 .4189

Observations 4,475 4,475 4,475 4,475 4,475 4,475

Notes: Dependent Variable: estimated mean flow utilities for groups 6 through 18. Proxy Variables: estimated
mean flow utilities for groups referred in each column. Instruments: estimated mean flow utilities for groups
referred in each column. Controls used in column II: average income of neighbors, proportion of Black
neighbors, proportion of neighbors with race other than White or Black, proportion of neighbors with college
degree or more, average number of rooms and proportion of homeowners in the neighborhood. The average
monthly rent is $544. Robust standard errors clustered by school attendance area are in parenthesis. *:
Statistically significant at the 10% level; **: Statistically significant at the 5% level.
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As an additional robustness test, for each specification I provide the p-value of the

over-identification test (i.e., J test). This test can be understood as a joint test for As-

sumptions 1, 2 and 3. Rejecting the null hypothesis is evidence that at least one of these

assumptions is not valid for that specification. Indeed, specification III is rejected at 1%

of significance, and specification IV is rejected at 5% of significance, suggesting that the

test is powerful in this context. Specifications V and VI are not rejected even at 30% of

significance, providing further evidence that the three proxy groups, two of non-parents

and one of parents, seem to take care of the original endogeneity problem. As discussed

in Appendix B, this over-identification test seems to have power to detect violations of As-

sumpion 1. I also perform other tests aiming at detecting violations of either Assumption

230 or Assumption 331, and find no evidence that these assumptions play an important role

in the main results.

The results of the preferred specifications (specifications V and VI) show that parents

are willing to pay 11% more a year to send each of their children to a 5% better elementary

public school. The corresponding estimates for middle school and secondary school are

respectively 6% and 13%.

Table 5

Magnitude of the Results
MWTP(5%) MWTP(1 St.Dev)

Per month Per year Per month Per year

Elementary School 63** 757** 202** 2,422**
(16) (192) (51) (614)

Middle School 36** 433** 115** 1,386**
(18) (216) (58) (691)

High School 70** 840** 224** 2,688**
(17) (204) (54) (653)

Notes: 1 St. Dev. ⇡ 16%. Coefficient values and standard errors derived from estimates of specification VI in
Table 4. *: Statistically significant at the 10% level; **: Statistically significant at the 5% level. Values are in
2000 dollars.

Table 5 shows the magnitude of the effects found in specification VI in Table 4. These

numbers are calculated over the average rent in Minnesota valued in 2000 dollars, which
30When I include c = 4,5 2 G2, I find that q4 = q5 = 0, as expected. Moreover, when I relax the assumption by

writing fc = a

p
0 +a

p
1 .c, where p = {parents,nonparents}, for all c  9 and c � 31, I find that a

p
1 = 0 for each p.

Finally, when I restrict the data to families with levels of household income above the median of the sample I find
similar results for each grade.

31When I restrict the data to only families with one child I find similar results for each grade.
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is $544. As the coefficients are averaged across grades, the standard errors become sub-

stantially smaller, and all coefficients become statistically significant at the 95% confidence

level. Parents are willing to pay $2,422 more per year to send one of their children to attend

primary school in a school that is one standard deviation better. The corresponding values

are $1,386 for middle school and $2,688 for secondary school.

6 Interpretation of Estimates
Although Table 5 offers insight into the statistical significance of the results, it is difficult to

gather the economic significance of these valuation estimates. To provide this context, this

section takes advantage of the unit of measurement of the estimates in Table 5 to discuss

the implications of these results in more detail.

A policymaker can use these estimates to perform a cost-benefit analysis of a statewide

reform that improves the achievement of students in all grades in one standard deviation

(16%). The results presented in Table 5 suggest that parents will be willing to pay $2,422

per child attending elementary school, $1,386 per child attending middle school and $2,688

per child attending high school. Meta-analyses on this topic suggest that the cost per stu-

dent of increasing the test scores in one standard deviation is of at least $2,850.32 This

value is directly comparable to the MWTP estimates from Table 5, suggesting that at the

level of efficiency suggested by previous studies33 this reform is not worth implementing

unless it generates enough positive externality at the state level. In a back-of-the-envelope

analysis, I calculate that this reform if performed in 2014 will generate a benefit of $2.6

billion and a cost of $3.2 billion.34

These estimates can also be used to study the level of competition among public

schools by calculating what a family would be willing to additionally pay over its life

cycle to live in a house located in a neighborhood that offers a one standard deviation

better school for all grades, all else constant.35 The willingness to pay will depend on how

32Greenwald et al. (1996) find that a one standard deviation increase in test score is generally achieved with a per
student expenditure of about $3,800. For investments targeted at teacher education and teacher experience, these
values are of about $2,850 and $3,350, respectively. However, Hanushek (1997) suggests that these estimates may
be too optimistic. All values are in 2000 dollars, inflated by the CPI index.

33In 1999-2000, the total expenditure per student in public schools in Minnesota was $8,916 (Source: Com-
mon Core of Data.). This suggests that at least 32% of the average school expenditure per student needs to be
additionally spent to achieve a 16% increase in test scores.

34In this calculation I use the total state enrollment in each grade in 2014 from the Common Core of Data as
well as the estimates for each grade from specification VI of Table 4. Amounts are inflated to 2014 dollars by the
CPI index.

35For simplicity, in this exercise the family is indifferent between the two houses except for school quality and
prices.
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many children are included in the family, on the stage of the children in their education

careers and on how long the family expects to stay in the new house. Table 6 presents these

results. For example, a family with one child about to enter kindergarten will be willing

to pay in 2000 an additional $15,445 in order to send its child to a one standard deviation

better school until 8th grade, all else constant.36 Similarly, an average family with a child

three years from attending kindergarten and another child about to attend 3rd grade will

be willing to pay an additional $35,768 (=$18,599 + $17,169) in 2000 in order to send its

children to a one standard deviation better school until both children finish high school, all

else constant.37

Finally, the estimates in this paper can also help shed some light on the level of com-

petition between public and private schools across grades. For instance, consider a family

with one child about to attend kindergarten contemplating whether to send its child to a

private school instead of the local public school, since the quality of the private school is

one standard deviation higher. In a state such as Minnesota, which does not have a pri-

vate school voucher program, that family will decide to keep its child in the local public

school unless the private school costs less than $2,422 a year per child. To provide some

rough benchmark, the average tuition charged by a private elementary school in the U.S.

is $5,400, and the average tuition charged by a private secondary school in the U.S. is

$8,470.38 About 78% of the private schools in the U.S. cost more than $2,422 at elemen-

tary grades, and about 90% of the private schools in the U.S. cost more than $2,688 at

secondary grades. Comparable data on private and public school quality are not available;

however, to the extent that private school tuition is a strong indicator of private school qual-

ity, these estimates suggest that private schools exert little competing pressure to public

schools unless a voucher system is in place, particularly for secondary grades.39

36For perspective, the average house price in Minnesota in 2000 is of $144,000, as can be seen in Table 1.
37In these present value calculations, I use an annual percentage rate (APR) of about 5.25% (i.e., b = .95 ⇡
1

1+APR ).
38Source: Data on private school tuitions of all states from the 2007-2008 School and Staffing Survey (SASS),

provided by the U.S. Department of Education. Data for Minnesota alone is not available in the public version. All
figures are in 2000 dollars, deflated by the CPI.

39For comparison, by 1999-2000 the maximum voucher payment allowed in the Milwaukee, WI private school
voucher program was for $5,106.
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Table 6
WTP Per Child

1 St. Dev. increase in school quality

Until
From 2nd Grade 5th Grade 8th Grade 12th Grade

3 Years Before Kindergarten 5,978 10,766 13,242 18,599
Kindergarten 6,972 12,557 15,445 21,692
3rd Grade – 6,514 9,882 17,169
6th Grade – – 3,928 12,427
9th Grade – – – 9,912

Notes: 1 St. Dev. ⇡ 16%. Coefficient values derived from estimates of specification VI in Table 4. For example,
the table shows that, all else constant, a family with one child about to enter 3rd grade will be willing to pay an
additional $9,882 for a house in order to send its child to a one standard deviation better school until the child
finishes 8th grade. Similarly, all else constant a family with one child about to enter kindergarten and another
child about to enter 9th grade will be willing to pay an additional $31,604 (=$21,692+$9,912) for a house in order
to send its children to a one standard deviation better school until both children finish high school. b = .95, so the
annual percentage rate (APR) that is used for the present value calculations of this table is around 5.25%. Values
are in 2000 dollars.

Naturally, a full analysis of school choice is much more complex than suggested

here. For instance, it should include comparisons among public schools in different neigh-

borhoods and comparisons between public and private schools, accounting for the fact that

families have heterogeneous preferences not only across grades, but also across many other

demographic characteristics. Moreover, it should acknowledge that different families might

consider school “quality” to be a different amenity than the one perceived by policy mak-

ers. For instance, families may consider other differences between a private and a public

school that might not be easily projected in measures of school quality, such as religious

curriculum.40 The intention of the admittedly speculative discussion in this section is to

highlight the types of policies that can be informed with willingness to pay estimates for

public school quality at this unit of measurement. In this sense, the results of this paper pro-

vide a preliminary step towards a more detailed empirical analysis about the competition

among public schools and between public and private schools. For instance, estimates like

the ones provided in this paper can be helpful as an input for models studying the impact of

educational policies in the spirit of Epple and Romano (1998), Nechyba (1999), Nechyba

(2000), Epple, Figlio, and Romano (2004) and Ferreyra (2007).

40A more complete analysis will also require knowledge of the whole distribution of the valuation estimates.
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7 Conclusion
This paper estimates the parental willingness to pay for an improvement in school quality.

It estimates a dynamic neighborhood choice model in order to identify the valuation of

school quality per year, per child at each grade level, a unit of measurement comparable to

the tuition charged by private schools and to available public education costs, facilitating

cost-benefit analyses.

Parental valuation is found to be higher for elementary and secondary grades com-

pared to middle school grades. One potential explanation is that some parents seek shorter-

term investments on their children’s career because of budget constraints. This will lead

some parents to postpone sending their children to a better school until later grades. More

broadly, the results suggest that parental valuation does not seem to outweigh costs, even

at the most valued grades. These findings highlight the importance of improving the effi-

ciency of the way school resources are typically spent, otherwise externalities are needed

to justify such investments.

Methodologically, I develop a novel strategy to control for confounding unobservable

amenities, including those that are post-determined, such as amenities affected by sort-

ing. Being able to fully control for the composition of neighbors is crucial to isolate the

valuation of any neighborhood amenity per se. Going forward, this method might be par-

ticularly useful to estimate the preference for neighborhood amenities other than school

quality (such as neighborhood price), where the same endogeneity issues are present, and

yet complementary identification strategies such as the boundary fixed effects approach

might be unfeasible. A practical solution is also developed to estimate a dynamic choice

model with a high dimensional state space using only cross-sectional data, provided some

synthetic cohort assumptions can be made. This method can be useful in the labor, public

and urban economics literatures, that often require detailed geographical and family data

available mostly in cross-sectional data sets such as the Decennial Census. Future research

is needed to determine whether these methods can be successfully applied to other contexts.
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A Details About the Estimation in Step 1
Families choose the neighborhood that yields the highest utility among the neighborhoods

available. Household i of group c chooses neighborhood j in period t if and only if the

utility of choosing neighborhood j is at least as high as the utility of choosing any other

neighborhood:

di,c,t = j () ei,c,t, j � ei,c,t,r � vr(Wi,c,t)� v j(Wi,c,t), 8r. (26)

Because ei,c,t, j is assumed distributed as extreme value, ei,c,t, j � ei,c,t,r has a logit dis-

tribution, and the probability that family i of group c chooses neighborhood j in period t

is:

P j(Wi,c,t) =
exp(v j(Wi,c,t))

ÂJ
r=1 exp(vr(Wi,c,t))

. (27)

The maximum likelihood estimate of this problem is the value of the parameter that

maximizes the sum across families of the log-likelihood that each family chooses the neigh-

borhood as observed in the data. The log-likelihood function is written as

LLc,t({Wi,c,t ,di,c,t}Ic
i=1) =

Ic,t

Â
i=1

J

Â
j=1

1{di,c,t= j} log(P j(Wi,c,t)), c = 0, ...,C, 8t. (28)

where 1{di,c,t= j} is an indicator for whether the expression in brackets is true.

I estimate �c,t and �c,t by maximizing equation (28) independently for each group

c 2 {0, ...,C}, and time t = 2000.41
dc,t, j is estimated via equations (12) and (13) by plug-

ging in estimates of �c,t and of �c,t along with data on Pc,t for all c. The technical results

below guarantee the consistent estimation of dc,t, j.

A.1 Technical Results

Assuming that the regularity conditions which guarantee that the Maximum Likelihood

Estimators �c,t and �c,t are consistent are satisfied,42 the following lemma guarantees the

mean convergence of v̂ j(Wi,c,t) and v̂ j(Wi,c,t+1).

41Due to the large number of parameters, it is unfeasible to estimate all coefficients of this model using a
standard numerical optimization algorithm, such as Newton-Raphson. Instead, I write the Ds as function of the
other parameter F using a contraction, as in Berry et al. (1995).

42See McFadden (1973), McFadden (1977) and Berry et al. (1995).

36



Lemma A.1. For all i, c and t = 2000, let Ŵi,c,t 0 be a consistent estimator of Wi,c,t 0 for

t 0 = t, t +1. Define

v̂ j(Wi,c,t) :=v j(Ŵi,c,t).

v̂ j(Wi,c,t+1) :=v j(Ŵi,c,t+1).

Then, E(|v̂ j(Wi,c,t)� v j(Wi,c,t)|)! 0 and E(|v̂ j(Wi,c,t+1)� v j(Wi,c,t+1)|)! 0 for each

i, c, j and t = 2000.

Proof. v̂ j(Wi,c,t) is a linear “plug-in” estimator of Ŵi,c,t . From the convergence in distri-

bution of the MLE estimator, E(||
p

n(Ŵi,c,t �Wi,c,t)||2) = Op(1), 8c, t. Assume that Wi,c,t

have finite second moments. Then, by Cauchy-Schwartz, the result follows.

Finally, I estimate dc,t, j using an empirical version of equation (12) and (13):

For c = 0, ...,18:

d̂c,t, j :=
1

nc,t
Â
i2Ic

h

D̂c,t, j +1{ j 6=di,c,t�1}.F̂c,t
| {z }

v̂ j(Wi,c,t)

�b

⇣

g + log
J

Â
r=1

exp
�

D̂c+1,t,r +1{r 6= j}.F̂c+1,t
�

| {z }

v̂r(Wi,c,t+1)

⌘i

.

(29)

For c = 31, ...,49:

d̂c,t, j :=
1

nc,t
Â
i2Ic

h

D̂c,t, j +1{ j 6=di,c,t�1}.F̂c,t
| {z }

v̂ j(Wi,c,t)

�

�b

⇣

g +Pc,t . log
J

Â
r=1

exp
⇣⇣

D̂0,t,r +1{r 6= j}.F̂0,t
| {z }

v̂ j(Wi,c,t+1)

⌘⌘

+(1�Pc,t). log
J

Â
r=1

exp
⇣

D̂c+1,t,r +1{r 6= j}.F̂c+1,t
| {z }

v̂ j(Wi,c,t+1)

⌘⌘i

.

(30)

Proposition A.1. For all i, c and t = 2000, let Ŵi,c,t be a consistent estimator of Wi,c,t .

Let d̂c,t, j be defined as in equations (29) and (30). Then d̂c,t, j is a consistent estimator of

dc,t, j, as defined by equations (12) and (13), respectively.

Proof. Let the term inside the sum in equations (29) and (30) be âi,c, j,t , and its true value be

ai,c, j,t . The continuous mapping theorem and Lemma A.1 imply that E(|âi,c, j,t �ai,c, j,t |)!
0. Apply Markov’s theorem to 1

nc,t
Âi2Ic,t (âi,c, j,t �ai,c, j,t) to show that it is op(1). The Law

of Large Numbers and Lemma A.1 guarantee that 1
nc,t

Âi2Ic,t ai,c, j,t
p! dc,t, j.
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B Monte Carlo Study
In this Section, I present a Monte Carlo study of the approach to control for unobservables

developed in this paper. To keep this study tractable, I focus on the second step of the

estimation procedure. Specifically, I study how violations of Assumptions 1 and 2 affect

the bias of the Proxy-IV estimators of q(2) and f(2) proposed in this paper. Re-writing

equations (16), (17) and (18):

�̂ j(s) =SQ j✓(s) +Pj�(s) +Q j�(s) +µ j(s)
| {z }

x j,(s)

, Gs = {1, ...,Rs}, s = 1,2,3, j = 1, ...,J

where x j,(s) is the error term, and Q j and d̂ j(s) are row vectors of dimensions R and Rs,

respectively, with s = 1,2,3. The coefficients of interest are q(2) and f(2). In words, the

Proxy-IV approach exploited in the paper involves using SQ j, Pj and d̂ j(3) as Instrumental

Variables for SQ j, Pj and d̂ j(1), where the dependent variable is d̂ j(2).

Basic Setup

I start by setting R = 1 (i.e., Q j has one dimension), R2 = 1 (i.e., one group belonging to

G2, the set of groups of interest), r := R3 �R1 = 3 (i.e., r more groups used as IVs than

groups used as proxies), ✓(2) = 1, �(2) =�1, �(2) = 1 and43

(SQ j,Pj,Q j, µ̄ j)⇠ N

0

B

B

B

B

B

@

mean =

0

B

B

B

B

B

@

1

1

1

1

1

C

C

C

C

C

A

,S =

0

B

B

B

B

B

@

1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1

1

C

C

C

C

C

A

1

C

C

C

C

C

A

. (31)

µc, j, an element of µ j,(s) for s 2 {1,2,3}, is defined so as to allow for the study of

violations of Assumption 1. I set µc, j ⇠N(µ̄c, j,s2 = 1) for all c and j, where µ̄c, j = µ̄ j.a
µ

c, j,

with µ̄ j defined in equation (31) and a

µ

c, j being drawn from uni f orm[0, āµ ]. For ā

µ 6= 0,

SQ j and Pj are endogenous (µc, j is correlated to SQ j and Pj conditional on Q j). Notice that

µc, j is defined so as to not be absorbed by the term Q j.lc.

Finally, the preference parameters change across groups within Gs for s = 1,3 as

follows:
43Qualitative results are robust to other values of these and the other parameters that are kept constant throughout

this Monte Carlo study.
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Xc = a

X
s +n

X
s .

(c�1)
Rs

, c 2 Gs := {1,2, ...,Rs}, s = 1,3 (32)

where X= {q ,f ,l}. For each X= {q ,f ,l}, n

X
c represents how different the correspond-

ing preference parameter of each group is relative to other groups within the same Gs. For

s = 1, I set a

l

1 = 10, n

l

1 = 1, n

q

1 = 0, n

f

1 = 0, and consider variations of a

q

1 and a

f

1 . For

s = 3, I set a

X
3 = 1 and n

X
3 = 1, with X= {q ,f ,l}. These baseline values are maintained

in all results below, unless otherwise noted.

The goal of this Section is to study the biases of q̂(2) and f̂(2) as Assumptions 1 or 2 are

violated. Assumptions 1 and 2 in the text imply
⇣

ā

µ = 0,aq

1 = 0,af

1 =�1,nq

1 = 0,nf

1 =

0
⌘

. Specifically, deviations from ā

µ = 0 imply violations of Assumption 1, and deviations

from
⇣

a

q

1 = 0,af

1 = �1,nq

1 = 0,nf

1 = 0
⌘

imply violations of Assumption 2. I consider

variations in ā

µ , a

q

1 and a

f

1 for different combinations of values of R1 and a

l

1 . I present

results in terms of q̂2 � q2 and f̂2 � f2 for different values of these parameters. For each

Monte Carlo iteration m = 1, ...,M, with M = 1,000, I re-draw the data generation process

defined above and calculate the biases q̂2 �q2 and f̂2 �f2, with q̂2 and f̂2 estimated using

the Proxy-IV approach described in Step 2 (Section 4.2). I present the average of these

biases across all M iterations, along with its 95% confidence interval.

B.1 Violations of Assumption 1 (āµ = 0):

Figures 2-4 present what happens with q̂2�q2 and f̂2�f2 for violations of Assumption 1.44

For each value of ā

µ , I estimate q̂

u
OLS,2�q2 and f̂

u
OLS,2�f2, the corresponding biases of the

OLS estimators of a linear regression of d j,2 onto SQ j, Pj and Q j. The superscript u stands

for “unfeasible”, since Q j is not observed by the econometrician; nonetheless, the biases

of these unfeasible OLS estimators offer an intuitive metric of the size of the violation of

Assumption 1, as Assumption 1 is valid (and thus q̂

u
OLS,2 and f̂

u
OLS,2 are unbiased) if and

only if ā

µ = 0.

For clarity in the exposition, first I present results for R1 = 1. For different values of
1
M ÂM

m=1

⇣

q̂

u
OLS,2 �q2

⌘

implied by different values of ā

µ , Figure 2(a) presents 1
M ÂM

m=1
�

q̂2 �q2
�

along with its corresponding 95% confidence interval across all M iterations. As a bench-

mark, I also present 1
M ÂM

m=1

⇣

q̂

f
OLS,2 �q2

⌘

, the average bias of the standard, “feasible” OLS

estimator of the linear regression of d j,2 onto SQ j and Pj (without including Q j as control).

44In order to isolate the impact of violations of Assumption 1, I set a

q

1 = 1 and a

f

1 =�1 to maintain Assumption
2 as valid in this case.
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When the unfeasible OLS estimator is unbiased (at the center of the horizontal axis), the

Proxy-IV estimator is also unbiased, but the feasible OLS estimator is biased upward. This

happens because, although Q j is endogenous (leading to a bias feasible OLS estimator), Q j

is fully absorbed by d j,(1), thus making the Proxy-IV estimator unbiased. For violations of

Assumption 1, the Proxy-IV estimator behaves better than even the unfeasible OLS estima-

tor, since d j,(1) partially absorbs the endogeneity in µ j,(2) while Q j does not.45 Figure 2(b)

shows analogous results for f .

Figure 2: Proxy-IV Bias for Violations of Assumption 1 (R1 = 1)

Unfeasible OLS bias
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Notes: For each value of ā

µ , each implying a different value of E
⇥

µc, j|SQ j,Pj,Q j
⇤

, Panel (a) (Panel (b)) presents the bias of three estimators
of q (f ): Unfeasible OLS, Feasible OLS and Proxy-IV (along with its 95% confidence interval). Feasible (Unfeasible) OLS refers to the OLS
estimator in a regression of d j,(2) on SQ j and Pj (on SQ j , Pj and Q j). Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj
and d j,(1) with SQ j , Pj and d j,(3) as IVs, where R1 = 1 and R3 = 4. The bias of the unfeasible OLS estimator, shown in the horizontal axis,
is a more intuitive metric of E

⇥

µc, j|SQ j,Pj,Q j
⇤

, i.e., the degree of violation of Assumption 1. This assumption is valid when the bias of the
Proxy-IV estimator of q and f is equal to zero, represented at the center of the corresponding horizontal axis.

Figure 3 presents the same results (without confidence interval, for clarity) for differ-

ent values of R1, but holding constant R = 1. It is clear that violations of Assumption 1 lead

to less bias in the Proxy-IV estimator the larger is R1. The reason, as discussed in Remark 4

in the text, is that d j,c for the additional groups c in G1 end up further controlling (partially)

for the endogenous µ j,(2) over and above controlling for Q j.l(2). In Figure 3(b), the Proxy-

IV estimator of f is noisier with higher values of R1 for larger violations of Assumption

1. This happens because 1� l̃(2) approaches zero as µ j,(2) becomes a larger component of

x j,(2) := Q j.l(2) +µ j,(2), making it non-invertible (see footnote 25).

45To see this, note that the plot of q̂2 �q2 tends to lie on top of the 45 degree line to the left of the origin (of the
horizontal axis) and below the 45 degree line to the right of the origin.
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Figure 3: Proxy-IV Bias for Violations of Assumption 1 by Values of R1

Unfeasible OLS bias
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

3̂
IV 2
!
3
2

-1.5

-1

-0.5

0

0.5

1

1.5
Proxy-IV (R1 = 1)

Proxy-IV (R1 = 2)

Proxy-IV (R1 = 3)

Unfeasible OLS

(a) q̂ �q

Unfeasible OLS bias
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

?̂
IV 2
!
?

2

-3

-2

-1

0

1

2

3
Proxy-IV (R1 = 1)

Proxy-IV (R1 = 2)

Proxy-IV (R1 = 3)

Unfeasible OLS

(b) f̂ �f

Notes: For each value of ā

µ , each implying a different value of E
⇥

µc, j|SQ j,Pj,Q j
⇤

, Panel (a) (Panel (b)) presents the bias of two estimators
of q (f ): unfeasible OLS and Proxy-IV. Unfeasible OLS refers to the OLS estimator in a regression of d j,(2) on SQ j , Pj and Q j . Proxy-IV
refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with SQ j , Pj and d j,(3) as IVs, where R1 is described in the Figure, and
R3 = R1 +3. The bias of the unfeasible OLS estimator, shown in the horizontal axis, is a more intuitive metric of E

⇥

µc, j|SQ j,Pj,Q j
⇤

, i.e., the
degree of violation of Assumption 1. This assumption is valid when the bias of the Proxy-IV estimator of q and f is equal to zero, represented
at the center of the corresponding horizontal axis.

This potential issue of noise is only of concern if elements of l(1) are close enough

to each other (low value of n

l

1 ) and close enough to l(2) (value of a

l

1 too close to l(2) =

1). In Figure 4(a), we show analogous results to Figure 3(b) for n

l

1 = n

l

3 = 5 instead of

n

l

1 = n

l

3 = 1,46 and in Figure 4(b), we show analogous results to Figure 3(b) for a

l

1 = 20

instead of a

l

1 = 10. In both cases, f̂ is much less noisy even for moderate violations of

Assumption 1. Of course, such noise, if existent, should yield wider confidence intervals

of the Proxy-IV estimators. Since the standard errors reported in Table 4 do not suggest the

existence of such noise, in practice this does not seem to have been an issue in the context

of this application.47

46Naturally, this heterogeneity within groups must happen in both the IV set (G3) and the proxy set (G1) in order
for it to propagate to the second stage equation in the Proxy-IV approach.

47If elements of d j,(1) are almost equal to each other, then one might experience multicollinearity issues, con-
tributing to even wider confidence intervals. This concern, together with the concern discussed in Figure 4(a),
guided me to choose groups distant from each other in age when selecting the groups to include in G1 (Section 5).
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Figure 4: Proxy-IV Bias of f̂ for Violations of Assumption 1 by Values of R1 (Higher Values
of n

l

1 and a

l

1 )
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Notes: Both panels should be compared to Figure 3(b). Panel (a) (Panel (b)) has all parameter values as Figure 3(b), except for a higher value
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l

1 (al

1 ): n

l
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l

3 = 5 instead of n

l

1 = n

l

3 = 1 (al

1 = 5 instead of a

l

1 = 1). For each value of ā

µ , each implying a different value of
E
⇥

µc, j|SQ j,Pj,Q j
⇤

, both panels present the bias of two estimators of f : Unfeasible OLS and Proxy-IV. Unfeasible OLS refers to the OLS
estimator in a regression of d j,(2) on SQ j , Pj and Q j . Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with
SQ j , Pj and d j,(3) as IVs, where R1 is described in the plot, and R3 = R1 +3. The bias of the unfeasible OLS estimator, shown in the horizontal
axis, is a more intuitive metric of E

⇥

µc, j|SQ j,Pj,Q j
⇤

, i.e., the degree of violation of Assumption 1. This assumption is valid when the bias of
the Proxy-IV estimator of q and f is equal to zero, represented at the center of the corresponding horizontal axis.

Figure 5 provides some diagnostics that can be obtained by the Proxy-IV, depending

on R1. It shows an important trade-off involved in the decision of whether to add more

groups as proxy (more elements in d j,(1)). On the one hand, a higher value of R1 leads to

a lower bias, as discussed above. Figure 5(a) shows why. The adjusted R2 of the Proxy-

IV approach increases with a higher value of R1. Moreover, this increase is higher the

larger is the unfeasible OLS bias. Intuitively, when Assumption 1 is valid then additional

elements of d j,(1) do not help absorb the endogenous component of x j,(2) := Q j.l(2) +

µ j,(2), but when it is invalid then these additional elements of d j,(1) partially absorb µ j,(2),

reducing the Proxy-IV bias. Figure 5(b) shows the other side of the trade-off. It presents

how the proportion (among all M iterations) of rejections of the null hypothesis in the over-

identification test (J test) changes with violations of Assumption 1 in terms of the bias of

the unfeasible OLS estimator of q .48 The level of significance is set to 5%, so for the test to

have power it needs to reject the null more than 5% of the times when the null is incorrect.

It is clear that this test has non-trivial power in this context, as the proportion of rejections

increases as Assumption 1 is violated. However, for higher values of R1, this increase is less

steep, reflecting the reduction in the power of the test to detect violations of Assumption 1.

48The qualitative results for the bias of the unfeasible OLS estimator of f are similar.
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Nonetheless, even for R1 = 3 the test has some power to detect violations of Assumption 1.

The results in Table 4 show that the over-identification test is rejected when R1 = 2 (column

IV of Table 4), suggesting that in practice the test is still powerful at least for R1 = 2.

Figure 5: Diagnostics Obtained From Proxy-IV
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Notes: For each value of ā

µ , each implying a different value of E
⇥

µc, j|SQ j,Pj,Q j
⇤

, and for different values of R1, Panel (a) presents the
adjusted R2 and Panel (b) presents the over-identification (J) test of the Proxy-IV method. The Unfeasible OLS refers to the OLS estimator in
a regression of d j,(2) on SQ j , Pj and Q j . Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with SQ j , Pj and
d j,(3) as IVs, where R1 is described in the Figure and R3 = R1 +3. The bias of the unfeasible OLS estimator of q , shown in the horizontal axis,
is a more intuitive metric of E

⇥

µc, j|SQ j,Pj,Q j
⇤

, i.e., the extent to which Assumption 1 fails. This Assumption is valid when the bias of the
Proxy-IV estimator of q and f is equal to zero, represented at the center of the corresponding horizontal axis.

B.2 Violations of Assumption 2
⇣

a

q

1 = 0,af

1 =�1
⌘

:

Figures 6(a)-7(a) present what happens with q̂(2)�q(2) for violations of Assumption 2.1.49

For clarity in the exposition, first I present results for R1 = 1. For different values of a

q

1 ,

Figure 6(a) presents 1
M ÂM

m=1
�

q̂(2)�q(2)
�

along with its corresponding 95% confidence in-

terval across all M iterations. Clearly, the estimator using the Proxy-IV method proposed

in this paper behaves better than the feasible OLS estimator for moderate violations of

Assumption 2.1 (aq

1 ⇡ 0). Figure 7(a) shows that these results do not change for differ-

ent levels of R1. Figures 6(b)-7(b) present analogous results for f̂(2)�f(2) with respect to

violations of Assumption 2.2.50

49In order to isolate the impact of violations of Assumption 2.1, I set ā

µ = 0 and a

f

1 =�1 to maintain Assump-
tion 1 and Assumption 2.2, respectively.

50In order to isolate the impact of violations of Assumption 2.2, I set ā

µ = 0 and a

q

1 = 0 to maintain Assumption
1 and Assumption 2.1, respectively.
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Figure 6: Proxy-IV Bias for Violations of Assumption 1 (R1 = 1)
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Notes: For each value of a

q

1 (af

1 ), each implying a different degree of violation of Assumption 2.1 (Assumption 2.2), Panel (a) (Panel (b))
presents the bias of two estimators of q (f ): Feasible OLS and Proxy-IV (along with its 95% confidence interval). Feasible OLS refers to the
OLS estimator in a regression of d j,(2) on SQ j and Pj . Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with
SQ j , Pj and d j,(3) as IVs, where R1 = 1 and R3 = 4. Assumption 2.1 is valid when a

q

1 = 0 and Assumption 2.2 is valid when a

f

1 = �1, both
represented at the center of the corresponding horizontal axis.

Figure 7: Proxy-IV Bias for Violations of Assumption 1 by Values of R1
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Notes: For each value of a

q

1 (af

1 ), each implying a different degree of violation of Assumption 2.1 (Assumption 2.2), Panel (a) (Panel (b))
presents the bias of two estimators of q (f ): Feasible OLS and Proxy-IV (along with its 95% confidence interval). Feasible OLS refers to the
OLS estimator in a regression of d j,(2) on SQ j and Pj . Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with
SQ j , Pj and d j,(3) as IVs, where R1 is described in the Figure and R3 = R1 +3. Assumption 2.1 is valid when a

q

1 = 0 and Assumption 2.2 is
valid when a

f

1 =�1, both represented at the center of the corresponding horizontal axis.

Figure 8 presents results for different values of a

l

1 . The higher is a

l

1 relative to

l(2) = 1, the flatter is the curve, thus the lower is the bias in the Proxy-IV method due
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to violations of Assumption 2.1 or 2.2.51 Intuitively, the larger is the difference between

elements of l(1) and l(2), the smaller is the repercussion of violations of Assumption 2 on

the bias of the Proxy-IV estimators.

Figure 8: Proxy-IV Bias for Violations of Assumption 1 by Values of a

l

1
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Notes: For each value of a

q

1 (af

1 ), each implying a different degree of violation of Assumption 2.1 (Assumption 2.2), Panel (a) (Panel (b))
presents the bias of two estimators of q (f ): Feasible OLS and Proxy-IV (along with its 95% confidence interval). Feasible OLS refers to the
OLS estimator in a regression of d j,(2) on SQ j and Pj . Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1) with
SQ j , Pj and d j,(3) as IVs, where R1 = 1 and R3 = 4 and a

l

1 is described in the Figure. Assumption 2.1 is valid when a

q

1 = 0 and Assumption
2.2 is valid when a

f

1 =�1, both represented at the center of the corresponding horizontal axis.

Figure 9(a) presents how the proportion (among all M iterations) of rejections of the

null hypothesis in the over-identification test (J test) changes with violations of Assumption

2.1. The level of significance is set as 5%. When the null hypothesis of Assumption 2.1 (as

well as Assumptions 1 and 2.2) is valid, the null is rejected around 5% of the times. For vi-

olations of Assumption 2.1 (but still maintaining Assumptions 1 and 2.2) the proportion of

iterations where the null is rejected does not increase, suggesting that the over-identification

test does not have power to detect violations of Assumption 2.1. As R1 increases, the test

does not increase its power to detect such violations either. These results are similar for

violations of Assumption 2.2, as can be seen in Figure 9(b). In Section 5, to mitigate this

concern I perform a more direct, powerful test to detect violations of Assumptions 2.1 and

2.2. For instance, to test for violations of Assumption 2.1 I incorporate in G2 a group c that

is similar to groups included in G1, and test for whether qc = 0. See footnote 30 in the text

for more details.
51Similarly, I find a flatter curve for higher values of n

l

1 = n

l

3 .
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Figure 9: Diagnostics Obtained From Proxy-IV
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Notes: For each value of a

q

1 (af

1 ), each implying a different degree of violation of Assumption 2.1 (Assumption 2.2), Panel (a) (Panel (b))
presents the over-identification (J) test of the Proxy-IV method. Proxy-IV refers to the IV estimator in a regression of d j,(2) on SQ j , Pj and d j,(1)

with SQ j , Pj and d j,(3) as IVs, where R1 is described in the Figure and R3 = R1 +3. Assumption 2.1 is valid when a

q

1 = 0 and Assumption 2.2
is valid when a

f

1 =�1, both represented at the center of the corresponding horizontal axis.

As discussed above, the findings of the Monte Carlo study suggest some guidelines

for implementing the Proxy-IV approach. First, in order to mitigate any bias due to vi-

olations of Assumptions 1 or 2, one should attempt to increase R1 as much as possible,

provided that standard errors of f̂ do not increase too much. It is also useful to make sure

that the groups included in G1 are sufficiently different from each other and from groups

included in G2. Further, over-identification tests are powerful to detect violations of As-

sumption 1, although they are more powerful the lower is R1. Importantly, a different test

must be performed if one wants to detect violations of Assumption 2, since such over-

identification tests cannot detect them. I follow these guidelines when implementing the

Proxy-IV approach in Section 5.
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